Supplementary

Appendix 1

Methods
Radiomics feature extraction

Feature extraction followed the Image Biomarker
Standardization Initiative (IBSI) guideline (35) in this study.

To ensure data validity and accuracy, 2 radiologists
(readers 1 and 2, with 6 and 12 years of chest diagnostic
experience, respectively) independently performed manual
segmentation of computed tomography (CT) images
using I'TK-SNAP software, and were blinded to the
clinical and histological data. A senior radiologist with
20 years of experience confirmed the segmentation.
Reader 1 (G.].) segmented all training cases, and reader 2
(L.S.) segmented all validation cases. Reader 3 (W.F.) with
20 years of experience confirmed the segmentation when
the 2 radiologists were uncertain. Regions of interest (ROI)
were manually delineated on the CT lung window (width,
1500 HU; level, -500 HU), then the segmented regions
delineated on each slice were merged to generate a volume
of interest (VOI).

To assess the reproducibility and robustness of feature
extraction, 1 month later, 40 patients in the training set
were randomly selected and re-segmented by Reader 1 and
Reader 2 to construct a re-segmentation set, and 40 patients
were randomly selected from each CT scanner to construct
different sets of CT scanners, which were used to calculate
the intra-class/inter-class correlation coefficient (ICC),
respectively.

The ICCs were calculated to assess the agreement of
features extracted separately by 2 radiologists and different
CT scanners, and all values were >0.75, reflecting good
agreement.

In total, 1,727 radiomics features were extracted from
each VOI of the CT images. All specific calculation
formulas could be easily obtained in the open-source
software package PyRadiomics 3.0.1 or previous studies (36).
Here, we only listed several categories that these features
could be divided into. Details of radiomics features were as
follows:

(I) 16 shape features,

(IT) 324 first order features,

(III) 1,387 texture features,

(i) 418 gray-level co-occurrence matrices (GLCM)
features,
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(i) 304 gray-level run-length matrix (GLRLM)

features,

(iii) 304 gray-level size zone matrix (GLSZM)
features,

(iv) 95 neighboring gray tone difference matrix
(NGTDM) features,

(v) 266 gray-level dependence matrix (GLDM)
features.

First order features and texture features were extracted
from original pictures as well as 8 filters, including Wavelet
filter, Laplacian of Gaussian (LoG) filter, Local Binary
Pattern (LBP) 3D filter, Square filter, Square Root filter,
Logarithm filter, Gradient filter, and Exponential filter. The

shape features were extracted from original pictures.

Visualization of the deep learning model

Grad-CAM (23) uses the gradient of network back-
propagation to calculate the weight of each channel of the
feature map to obtain the heat-map. The weight calculation
formula for Grad-CAM is as follows:

ZZ o [1]

Where @, represents the weight, ¢ represents the
category, k represents the feature map, Z represents the
size of the feature map (i.e., length x width), ¥ is the logits
corresponding to the category (before the softmax), 4*
represents the feature map of the convolution output, and 7
and j represent the abscissa and ordinate of the feature map,
respectively.

After obtaining the weights, the channel linear weights
of the feature map were fused to obtain the heat-map.
Grad-CAM adds an ReLU operation to the fused heat-map,
reserving only the area with a positive effect on category c.

The Grad-CAM fusion formula is as follows:

Lioam = ReLU[Za,fA"] (2]
k
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Figure S1 Related heat maps in training (A) and test (B) sets. Correlation analysis showed that the absolute value of the correlation of each
feature between EGFR mutation group and wild-type group was less than 0.75. EGFR, epidermal growth factore receptor.
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Figure S2 Delong test was used to compare the performance differences of different prediction models in predicting EGFR mutation status.

(A) Training set; (B) test set. CNN, convolutional neural network; Com, comprehensive model; Bayes, naive Bayes; LR, logistic regression;
SVM, support vector machine; EGFR, epidermal growth factore receptor.
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