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Appendix 1

Imaging data acquisition and preprocessing

All magnetic resonance imaging (MRI) data from local 
institutions were acquired using 1.5-T or 3.0-T MRI 
scanners (Fujian Provincial Cancer Hospital: MAGNETOM 
Verio, MAGNETOM Skyra, or Trio Tim [Siemens 
Healthineers, Erlangen Germany]; Discovery MR 750 
[GE HealthCare, Chicago, IL, USA]; or Ingenia [Philips 
Healthcare, Amsterdam, the Netherlands]). The pelvic 
MR imaging protocol included the following sequences: (I) 
contrast-enhanced T1-weighted imaging (ceT1WI), (II) 
T2-weighted imaging (T2WI), and (III) diffusion-weighted 
imaging (DWI). The T1c sequence was acquired immediately 
after intravenous administration of a gadolinium-based 
contrast agent at a dose of 0.1 mmol/kg. All imaging data 
were collected before the initiation of surgical treatment. 
The quality of the imaging data was assessed to ensure the 
absence of patient motion and artifacts. The parameters 
for the ceT1W were as follows: repetition time (TR),  

220–1,900 ms; echo time (TE), 2.3–29 ms; section thickness, 
2.0–5.0 mm; interslice spacing, 1.5–2.0 mm; number of 
excitations (NEX), 1; flip angle (FA), 50–111°; field of view 
(FOV), 220×192–240×240 mm2; and matrix, 256×162–
320×256 mm2. The parameters for the T2W sequence were 
as follows: TR, 1255–6690 ms; TE, 70–122 ms; section 
thickness, 2.0–5.0 mm; interslice spacing, 1.5–2.0 mm;  
NEX, 1; FA, 90–142°; FOV, 220×192–240×240 mm2; and 
matrix, 320×238–512×512 mm2. The parameters for the 
fluid-attenuated inversion recovery (FLAIR) sequence 
were as follows: TR, 3,500–12,000 ms; section thickness,  
2.0–5.0 mm; interslice spacing, 1.5–2.0 mm; NEX, 1; 
FA, 90–150°; FOV, 220×192–240×240 mm2; and matrix, 
256×179–256×256 mm2.

Preprocessing for image standardization included the 
entire gross tumor volume cropping, the cropping of all 
images to a size of 32×128×128 based on the location of the 
tumor region, and the resampling of anisotropic voxels into 
1×1×1 mm³ via linear interpolation.
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Figure S1 Network architecture of the CoTr model. CNN, convolution neural network; Conv3d, 3d convolution layer; MRI, magnetic 
resonance imaging; 

Appendix 2

Detailed architecture of the segmentation model 

Figure S1 shows the architecture of the convolution neural 
network (CNN) encoder, decoder, and feed-forward 
network in the Transformer. It consists of a convolutional 
batch normalization leaky rectified linear unit (ReLU), and 
three stages of 3D residual blocks. The decoder contains 
four upsampling modules. Each of the first three modules 
has a “ConvTranspose3d” layer followed by a residual block 

and a pixel-wise summation with the corresponding feature 
maps from the encoder and the “ConvTranspose3d” layer. 
The last module comprises an upsampling layer followed by 
a 3D convolutional layer that maps the 64-channel feature 
maps to the desired number of classes. The feed-forward 
network in the Transformer has two linear projection layers: 
a Gaussian Error Linear Unit (GELU) activation layer and 
a dropout layer, with a normalization layer following the 
first layer and a dropout layer following the second layer. 
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Appendix 3

Detailed architecture of the prognostic model

Figure S2 shows a detailed schematic of the prognostic 
architecture. The upper part of the figure is mainly used 
for extracting the multiscale features of the image. The 
features are extracted by feeding the MRI scan along 
with the corresponding mask into the network and finally 
through a lightweight CNN network. The CNN network 
is basically a ConvMixer architecture, which uses a mixture 
of separation space and channel dimensions. It starts 

with 3D convolution, followed by a ConvMixer structure 
consisting of a depthwise convolution combined with 
residual concatenation and a pointwise convolution, which 
has 10 layers. Each convolution is followed by an activation 
function GELU and a batch normalization layer. Finally, 
the features are output after a fully connected layer. 

Survival prediction is shown in the lower half of the 
figure. By combining multiscale image features and clinical 
information, the model goes through four fully-connected 
layers, each of which is followed by a batch normalization 
layer, an activation layer ReLU, and a dropout layer.

Figure S2 Network architecture of the survival prediction model.
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Figure S3 Boxplots illustrating the DSC and HD95 of each model on the test cohort. (A,B) Comparison of the DSC and HD95 on 
ceT1WI. (C,D) Comparison of the DSC and HD95 on T2WI. Wilcoxon rank test: *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. 
ceT1W, contrast-enhanced T1-weighted; T2W, T2-weighted; DSC, Dice similarity coefficient; HD95, 95% Hausdorff distance; ns, not 
significant; Att U-Net, attention U-Net.

Appendix 4

Evaluation metrics

(I) Dice similarity coefficient (DSC) 
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A: Ground truth; B: Segmentation

(II) 95% Hausdorff distance (HD95)
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In the actual calculation, instead of selecting distances 
that are not the maximum distance, we take distances 
ranked at 5% after ranking them from largest to smallest. 
The purpose of doing this is to exclude some unreasonable 
distances caused by outliers and to maintain the stability of 
the overall value. 


