Supplementary

Appendix 1

84.12% of the proteins were between 0-100 kDa (*Figure S1A*). After proteolysis by trypsin, 95.1% of the protein could be detected by mass spectrometry, indicating that the enzymatic efficiency was extraordinarily high (*Figure S1A*). In general, the peptides of the protein profile are dominated by 2+ and 3+, and in our study the peptides of 2+ and 3+ accounted for 81.2% (*Figure S1A*). For the spectra and peptides identified to the protein, it is generally believed that the greater the number, the higher the confidence of the protein. In this result, 68.83% of the proteins had more than 2 spectra to support the identification, and 60.68% of the proteins had 2 unique peptides to support the identification (*Figure S1B*). We used the target-decoy method for false positive evaluation. The protein identification threshold was false discovery rate (FDR)<1%, and the FDR of the peptide-spectrum match (PSM) and protein were evaluated separately (*Figure S1B*).

Figure S1 Quality control of the data identified by proteomics in rat bladder tissue. (a) Protein molecular weight distribution diagram, peptide charge distribution diagram and missed cleaveges distribution diagram. (b) Protein identification unique peptide number distribution diagram, protein identification unique spectra number distribution diagram, protein false discovery rate and peptide-spectrum match false discovery rate.

Appendix 2

We display the top 20 proteins with increased or decreased expression and their fold change in the following table.

Table S1 The top 20 increased differentially expressed protein (DEPs) in ketamine treated rat urine samples compared to control group

Proteins(up)	Fold change
Lipoxygenase homology domains 1 (Loxhd1)	3.739952982
Serine/threonine-protein phosphatase 1 regulatory subunit 10(Ppp1r10)	3.541575787
Keratin, type I cytoskeletal 10(Krt10)	2.984604082
DAP3-binding cell death enhancer 1 (Dele1)	2.899067973
GTPase activating protein testicular GAP1 (tGap1)	2.708722676
Fc fragment of IgG-binding protein (Fcgbp)	2.591026386
LBH domain-containing 2 (Lbhd2)	2.543003004
Keratin, type II cytoskeletal 1 (Krt1)	2.54024553
Serum albumin (Alb)	2.27004498
Echinoderm microtubule-associated protein-like 5 (Eml5)	2.243260225
Deoxyribonuclease-1 (Dnase1)	2.163559813
AT-rich interaction domain 3C (Arid3c)	2.135045788
Capping protein regulator and myosin 1 linker 2 (Carmil2)	2.11468956
Meprin A subunit alpha (Mep1a)	1.994876567
Keratin, type II cytoskeletal 6A (Krt6a)	1.961711449
Cubilin OS=Rattus norvegicus (Cubn)	1.94926884
Urinary protein 1	1.938451945
Neuronal apoptosis inhibitory protein (Naip)	1.92289812
Lactase-phlorizin hydrolase (Lct)	1.921361909
Collagen alpha-1(I) chain OS=Rattus norvegicus (Col1a1)	1.889831845
Coatomer protein complex, subunit zeta (Copz2)	1.871099763

The of 20 decreased uncremany expressed protein (D113) in Retaining reaction	at unite samples compared to control group		
Proteins (down) Fold char			
Mast cell protease 1 (Mcpt1)	0.35559608		
Mast cell protease 2 (Mcpt2)	0.391628906		
Acyloxyacyl hydrolase (Aoah)	0.475499379		
Zero beta-globin (Fragment)	0.494807389		
Phosphatase and actin regulator (Phactr3)	0.495260588		
arvalbumin alpha (Pvalb) 0.496477493			
GIPC PDZ domain-containing family, member 3 (Gipc3)	0.502031679		
Aly/REF export factor (Alyref)	0.529845212		
Alpha globin (Hba-a3)	0.535662499		
Malonyl-CoA decarboxylase, mitochondrial (Mlycd)	0.536544844		
Desmuslin (DMN)	0.558401104		
Nesprin-1	0.559887553		
Keratin, type I cytoskeletal 14 (Krt14)	0.571095288		
Four and a half LIM domains 3 (FhI3)	0.594009377		
Voltage-dependent calcium channel subunit alpha-2/delta-3 (Cacna2d3)	0.594103368		
HECT domain E3 ubiquitin protein ligase 4 (Hectd4)	0.599442607		
Olfactory receptor OS=Rattus norvegicus (Olr174)	0.602178973		
Actin, beta-like 2 OS=Rattus norvegicus (Actbl2)	0.60514843		
Alpha-synuclein OS=Rattus norvegicus (Snca)	0.611749025		
Phosphorylase b kinase regulatory subunit (Phkb)	0.611764341		
Galectin-5 (Lgals5)	0.621122069		

Table S2 The top 20 decreased differentially expressed protein (DEPs) in ketamine treated rat urine samples compared to control group

Appendix 3

We compared the DEPs and the COG database to obtain annotations for each protein, and macroscopically recognize which COG the identified protein belongs to. We also predicted the possible functions of these proteins and classified them through their functions. The functional classification with the largest number of proteins were general function prediction only, with 39 proteins involved; the second functional classification was posttranslational modification, protein turnover, chaperones (34 proteins), translation, ribosomal structure and biogenesis (29 proteins), signal transduction. mechanisms (19 proteins) (*Figure S2A*).

After getting the EggNOG (evolutionary genealogy of genes: Non-supervised Orthologous Groups) annotation for each protein, we done EggNOG statistics on the protein to identify which EggNOG the protein belongs to. And the database mainly divided into five categories: cellular processes and signaling, energy production and conversion, information storage and processing, metabolism, poorly characterized. The results showed that DEPs involed most in cellular processes and signaling (618 proteins), accounting for 48% of all identified proteins, in cellular processes and in signaling, proteins were mostly involved in signal transduction mechanisms (167 proteins), followed by posttranslational modification, protein turnover, chaperones (137 proteins), intracellular trafficking, secretion, and vesicular transport (121 proteins), cytoskeleton (95 proteins) (*Figure S2B*).

Proteins can only perform their specific functions in specific subcellular locations. We obtained subcellular localization annotations for each protein and performed statistical analysis. The results showed that the number of proteins was highest in cytoplasm (254 proteins), followed by nucleus (86 proteins), extracellular (130 proteins) (*Figure S2C*). After annotating parallel statistical analysis of the transcription factors of each identified protein, the number of proteins involved in transcription cofactors was the highest (20 proteins), followed by zf-C2H2 (4 proteins), chromatin remodeling factors (3 proteins) (*Figure S2D*).

Figure S2 Functional annotation of DEPs. (a) Statistics of COG entries of DEPs. (b) Statistics of EggNOG entries of DEPs. (c) Statistics of subcellular localization entries of DEPs. (d) Statistics of transcription factors entries of DEPs.

Appendix 4

In the platelet activation pathway, 64 proteins are annotated, 19 of which are differentially expressed, P=0.03212282. For information about each protein and its expression, see *Table S4* and *Figure S3*.

Table S3 KEGG annotation for platelet activation							
Pathway	Diff Proteins with pathway annotation (662)	All Proteins with pathway annotation (3394)	Pvalue	Qvalue	Pathway ID	Level 1	Level 2
Platelet activation	19 (2.87%)	64 (1.89%)	0.03212282	0.7091730262	ko04611	Organismal Systems	Immune system

Table S4 All proteins differentially expressed in the platelet activation pathway

Pathway	Proteins
Platelet activation	tr D4ACS0 D4ACS0_RAT, tr A0A0G2JU01 A0A0G2JU01_RAT,sp Q63538 MK12_RAT, sp P62836 RAP1A_RAT, sp P02454 C01A1_RAT, tr Q9R1X8 Q9R1X8_RAT, sp P10824 GNAI1_RAT, tr Q45QM8 Q45QM8_RAT, sp P14480 FIBB_RAT, tr G3V852 G3V852_RAT, sp P61589 RHOA_RAT, tr A1L114 A1L114_RAT, tr Q45QN0 Q45QN0_RAT, tr M0R4J7 M0R4J7_ RAT, tr D3ZRN3 D3ZRN3_RAT, tr F1LS40 F1LS40_RAT, sp Q76K24 ANR46_RAT, tr D4ACC2 D4ACC2_RAT, tr F1LQ3 F1LQT3_RAT

Figure S3 The KEGG pathway diagram of the platelet activation pathway.