
Supplementary

Video S1 This ultrasound cine clip demonstrates a fine-needle aspiration of an axillary lymph node without (left) and with (right) steering. The needle and its tip are seen (arrows).

Video S2 This is another ultrasound cine clip demonstrating a fine-needle aspiration of an axillary lymph node without (left) and with (right) steering. The needle and its tip are seen (arrows).

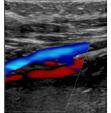
Penguins Can't Fly Gracefully South

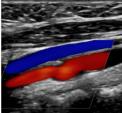
Probe

• GE Logiq E9 & E10

Parameter	ML6-15	9L	C1-6
B-mode for Breast	Excellent	Mid-range	Poor
Twinkling	Poor	Mid-range	Excellent
Depth	Superficial	Mid-range	Deep (Abdominal)
Color Doppler Frequencies	6.3, 7.5, 8.3, 10.0, 11.9,12.5 MHz	3.1, 3.6, 4.2, 5.0, 6.3 MHz	1.7, 1.9, 2.1, 2.5, 3.1, 3.6 MHz

- Transducer names imply frequency bandwidth (range)
- ACR Breast Ultrasound Requirements: ML6-15


Color Doppler


- · Most often used for blood flow quantification
- B-mode Transmit Frequency
 - Determines frequency used for grayscale image
- Color Doppler Transmit Frequency

Gain

the twinkling.

 Used for flow velocity evaluation

External Carotid Artery

Carotid Bulb

$$f_d = \frac{2f_0v\cos\theta}{c}$$

f_d: Doppler shift, Hz

$$v = \frac{f_d c}{2f_0 \cos \theta}$$

θ: Angle between US beam and vessel

Frequency

- Frequency is selectable and will change the scale due to the relationship between transmit frequency and velocity for a given Doppler shift.
 - · This can be changed to see if twinkling improves.

Frequencies

 Typi lead

ically, lower tr d to better twir	ansmit frequend nkling.		1 MHz 9L,
Parameter	ML6-15	9L	C1-6
Color Doppler	6.3, 7.5, 8.3, 10.0,	3.1, 3.6, 4.2,	1.7, 1.9, 2.1, 2.5,

5.0, 6.3 MHz

3.1, 3.6 MHz

 Low values of gain may suppress twinkling signals.
twirikiing signals.

noise from hand motion.

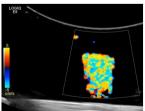
The Doppler gain is related to the

strength of the ultrasound signal

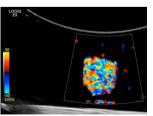
and will affect the appearance of

Typical starting values are 15-20

· High values of gain may introduce


CF Gain (Turn Knob)




Scale

- · If the twinkling is strong, scale may not change the appearance drastically.
- If the twinkling is weak, lowering the scale is advised.

© 2024 Mayo Foundation for Medical Education and Research

June 19, 2024