

Figure S1 Inconsistency plot for the optimal duration of adjuvant trastuzumab network. Two triangular loops were found in the six comparisons. The $P_{(A-B-F)}$ was 0.067, and the $P_{(A-B-C)}$ was 0.321. A, observation; B, T-12 months; C, T-24 months; F, T-9 weeks; and T, trastuzumab.

Contribution plot for the optimal duration

Figure S2 Contribution plot for the optimal duration of adjuvant trastuzumab. The numbers represent the weights as percentages (%). The size of each circle is proportional to the weights of the direct comparisons (horizontal axis). A, observation; B, T-12 months; C, T-24 months; D, T-6 months; E, T-12 weeks; F, T-9 weeks; and T, trastuzumab.

Figure S3 Risk of bias summary of the RCTs included in the network meta-analysis. RCTs, randomized controlled trials.

Figure S4 Comparison-adjusted funnel plot for the optimum duration of adjuvant trastuzumab. T, trastuzumab.

А	Author,year	HR(95%C	:I) Weight(%)
	12 months vs Observation		
	Martine 2005	0 53(0 38	3-0 73)# 19 64
	Martine 2005	0.51(0.32	2-0.82)* 9.62
	Marc 2009	0.86(0.61	1-1.22) 6.46
	Slamon 2011	0.78(0.64	1-0.95) 25.03
	Slamon 2011	0.68(0.56	5-0.84) 30.68
	Gianni 2014	0.63(0.42	2-0.95) 8.56
	subtotal	0.67(0.59	9-0.74) 100
	NMA HT	0.85(0.81	I-0.89)
	9 weeks vs Observation		
	Joensuu 2006 🗕 🗕 🛶	0.27(0.10	0-0.75) 61.13
	Joensuu 2006 🛛 👘 🖕	0.86(0.43	3-1.70) 38.87
	subtotal	0.50(-0.0	6-1.06) 100
	NMA HTT	0.93(0.84	4-1.04)
	6 months vs 12 months		
	Mavroudis 2015 🗕 📥	1.31(0.58	3-2.59)# 3.00
	Mavroudis 2015		2-4.54)* 0.79
	Pivot 2019 H 🛏 🛉	1.08(0.89	9-1.30) 72.15
	Earl 2019	− 1.09(0.75	9-1.50) 24.00
	subtotal H	1.09(0.92	2-1.27) 100
	NMA Hatt	1.04(0.98	3-1.11)
	9 weeks vs 12 months		
	Conte 2017	0.98(0.59	9-1.62) 40.66
	Joensuu 2018	1.24(0.82	2-1.85)* 40.66
	Joensuu 2018 —	4.83(1.22	2-2.74)# 18.67
	subtotal		2-1.57) 100
	NMA 1	1.07(0.9)	(-1.19)
	0.0 0.5 1.0	1.5 2.0	
В	Author,year HF	R(95%CI)	Weight(%)
	12 months vs Observation		
	Martine 2005 - 0.5	1(0.30-0.87)	29.16
	Slamon 2011 0 4	7(0 28-0 77)	20.47
		A(0 AA A 0A)	00.47
		4(0.41-1.01)	26.32
	Gianni 2014 🛛 🛶 🚽 0.6	0(0.23-1.60)	5.05
	Subtotal 📥 0.5	3(0.38-0.69)	100
	NMA Ħ 0.7	7(0.69-0.89)	
	6 months vs 12 months		
	Mayroudia 2015	8/0 30-36 /8	0.02
	Mavroudis 2010	0(0.05 4.27)	70.02
	Pivot 2019	0(0.00-1.07)	13.07
	Earl 2019	8(0.82-1.69)	26.32
	Subtotal 1.1	1(0.88-1.33)	100
	NMA 1.0	5(0.96-1.14)	
	0 weeks vs 12 months	-()	
			/
	Conte 2017 - 0.8	7(0.59-1.29)	53.91
	Joensuu 2018 4	1(0.95-1.80)	46.09
	Subtotal 🛏 1.0	7(0.64-1.50)	100
	NMA 1.0	5(0.96-1.17)	
	0 1 2	3 4	

Figure S5 Subgroup analysis for disease-free survival based on the lymph node status. The pooled hazard ratios for lymph node-positive (A) and lymph node-negative patients (B) were produced by network meta-analysis and pairwise meta-analysis. *, 1–3 lymph nodes positive; #, ≥ 4 lymph nodes positive. CI, confidence interval for pairwise meta-analysis and the credible interval for network meta-analysis; NMA, network meta-analysis.

А	Author,year	HR(95%CI)	Weight(%)
	12 months vs Observation		
	Martine 2005	0 61/0 38-1 00)	6 30
	Martin e 2005	0.67(0.24-1.84)*	0.96
	Martine 2005	0.63(0.34-1.17)#	3.57
	Slam on 2011	0.65(0.49-0.85)	18.95
	Slam on 2011	0.88(0.68-1.13)	12.13
	Edith 2014	0.61(0.51-0.72)	55.69
	Gianni 2014 🗕 🛶 🚽	0.74(0.41-1.44)	2.32
	subtotal 📥	0.65(0.58-0.73)	100
	NMA 🗮	0.85(0.81-0.89)	
	24 months vs Observation		
	Martine 2005 🗕 🛏 🛏	0.82(0.70-0.98)	100
	subtotal 🛏 🛏	0.82(0.70-0.98)	100
	NMA 🔫	0.90(0.84-0.95)	
	6 months vs 12 months		
	Mavroudis 2015	2.20(0.91-5.31)#	0.49
	Mavroudis 2015	1.86(0.76-4 .55)	0.67
	Pivot 2019	1.07(0.87-1.31)	49.42
	Earl 2019 🛏 🛶	0.96(0.76-1.20)	49.42
	subtotal H	1.03(0.87-1.18)	100
		1.02(0.90-1.10)	
	9 Weeks vs 12 months	1 15(0 77-1 73)	36.64
	Conte 2017	1.28(0.96-1.69)#	63.36
	Joensuu 2018	1.23(0.94-1.52)	100
		1.10(1.00-1.21)	
	0 1 2	3	
В	Author,year	HR(95%CI)	Weight(%)
_	12 months vs Observation		
	Martine 2005 🛏 🛶 🖬	0.52(0.39-0.69)	20.59
	Slam on 2011	0.64(0.49-0.83)	16.03
	Slam on 2011 🗕 🛶 🛶	0.65(0.50-0.84)	16.03
	Edith 2014	0.62(0.52-0.73)	42.02
	Gianni 2014 🗕 🛶 🛶	0.58(0.35-0.94)	5.32
	Subtatol	0.61(0.54-0.67)	100
	NMA 🔫	0.82(0.78-0.86)	
	24 months vs Observation		
	Martine 2005 🛏 🛶 🖬	0.70(0.59-0.83)	100
	Subtotal 🛏 🛏	0.70(0.59-0.83)	100
	NMA HTH	0.83(0.78-0.88)	
	24 months vs 12 months		
	Martine 2005	0.93(0.76-1.14)	100
	Subtotal 🗕	0.93(0.76-1.14)	100
		1.01(0.95-1.07)	
	6 months vs 12 months		
	Mavroudis 2015	1.14(0 .48-2.69)*	2.88
	Mavroudis 2015	1.40(0 .61-3.20) [^]	2.10
		1.09(0.88-1.35)	63.68
	Earl 2019	1.20(0.97-1.04)	31.34
		1 07(1 00-1 15)	100
	9 weeks vs 12 months		
	Conte 2017	4 00/0 67-4 78	46 27
	Joensuu 2018	1.03(0.07-1.70)	53 73
	Subtatol	1.35(0.97-1.73)	100
	NMA	1.17(1.04-1.31)	
	0.0 0.0 1.0 1.0	2.0	

Figure S6 Subgroup analysis based on hormone receptor status. The pooled hazard ratios for hormone receptor-positive (A) and hormone receptor-negative patients (B) produced by network meta-analysis and pairwise meta-analysis. [#], estrogen receptor positive; *, progesterone-or estrogen-receptor negative. CI, confidence interval for the pairwise meta-analysis and the credible interval for network meta-analysis; NMA, network meta-analysis.

Figure S7 Subgroup and sensitivity analyses in early breast cancer based on the lymph node status in the network meta-analysis. The columns were compared with the rows. Numbers in parentheses represent the 95% CI. HRs with P values <0.05 were considered statistically significant (red). Subgroup analysis was conducted in node-positive early breast cancer (A) and node-negative early breast cancer (B). (C) A sensitivity analysis was performed in lymph node-positive early breast cancer based on the number of positive lymph nodes (\geq 1, 1–3 and \geq 4 lymph positive nodes). T, trastuzumab.

Figure S8 Subgroup and sensitivity analyses for disease-free survival in early breast cancer based on the hormone receptor status in the network meta-analysis. The columns were compared with the rows. Numbers in parentheses represent the 95% CI. HRs with P values <0.05 were considered statistically significant (red). Subgroup analysis for disease-free survival was conducted in hormone receptor-positive early breast cancer patients (B). A sensitivity analysis was performed in hormone receptor-negative early breast cancer after excluding the trials that reported estrogen receptor and progesterone receptor status. T, trastuzumab.

Table S1	Summary	of the	confidence	in	each	comparison	and	ranking
	1							()

Comparison	Nature of the evidence	Confidence	Downgrading due to
T-12 months vs. observation	Mixed	High	
T-24 months vs. observation	Mixed	Moderate	Imprecision
T-9 weeks vs. observation	Mixed	Moderate	Imprecision
T-24 months vs. T-12 months	Mixed	Moderate	Imprecision
T-6 months vs. T-12 months	Mixed	Moderate	Imprecision
T-9 weeks vs. T-12 months	Mixed	Moderate	Inconsistency
T-12 weeks vs. T-12 months	Mixed	Moderate	Imprecision
T-6 months vs. observation	Indirect	Moderate	Imprecision
T-12 weeks vs. observation	Indirect	Moderate	Imprecision
T-24 months vs. T-12 months	Indirect	Moderate	Imprecision
T-24 months vs. T-12 weeks	Indirect	Moderate	Imprecision
T-24 months vs. T-9 weeks	Indirect	Moderate	Imprecision
T-6 months vs. T-12 weeks	Indirect	Moderate	Imprecision
T-6 months vs. T-9 weeks	Indirect	Moderate	Imprecision
T-12 weeks vs. T-9 weeks	Indirect	Moderate	Imprecision
Ranking of treatments	-	Moderate	Imprecision

T, trastuzumab.