Supplementary

Figure S1 IHC staining reveals that HDF spheroids do not contain epithelial cells or express the breast cancer markers ER, PR, HER2 and GATA-3. (A) HDF spheroids were stained by IHC for epithelial marker (panCK) and fibroblast marker (vimentin). (B) Histogram analysis of panCK quantification shows that the HDF spheroids do not contain epithelial cells. ${ }^{* * * *}$, P value <0.0001. (C) HDF spheroids were stained by IHC for the breast cancer markers ER, PR, HER2 and GATA-3. HDF spheroids show no positive staining for any of the breast cancer markers. Scale bar: $100 \mu \mathrm{~m}$. HDF, human dermal fibroblasts; panCK, pan cytokeratin; IHC, immunohistochemistry.

Table S1 Antibodies used in this study for IHC

Marker	Antibody	Catalogue number	Dilution
ER	Rabbit monoclonal anti-Human ER, clone SP1	Ventana cat\#790-4325	RTU
PR	Mouse monoclonal anti-Human PRA, clone 16	Leica Cat\#NCL-L-PGR-312	1:100
HER2	Rabbit monoclonal anti-Human Her2/new, clone 4B5	Ventana cat\#790-2991	RTU
CK	Mouse monoclonal anti-Human cytokeratin, clone AE1/AE3	Dako cat\#M3515	1:200
Gata3	Mouse monoclonal anti-Human Gata3, clone L50-823	Zytomed, cat\#BMS054	RTU
Vimentin	Mouse monoclonal anti-Human Vimentin, clone V9	Dako, cat\#M0725	1:1,000
Mammaglobin	Mouse monoclonal anti-Human Mammaglobin, clone 304-1A5	Dako, cat\#IS074	RTU

IHC, immunohistochemistry; RTU, ready to use.

Table S2 Clinical data of all patient-derived samples used in this study

Patient	Tumor grade	Successful growth of spheroids yes, no	Genetic background	Subtype
1	3	Y	ER+ PR+ HER2+ Ki67 15\%	Bii
2	N/A	Y	ER+ PR+ HER2- Ki67 8\%	A
3	N/A	N	ER+ PR+ HER2+ Ki67 3\%	Bii
4	3	Y	ER- PR- HER2- Ki67 40\%	T
5	2	Y	ER+ PR+ HER2- Ki67 20\%	A
6	2	Y	ER+ PR- HER2- Ki67 10\%	Bi
7	2	Y	ER+ PR+ HER2- Ki67 5\%	A
8	1-2	Y	ER+ PR+ HER2 N/A Ki67 N/A	N/A
9	2	Y	ER+ PR+ HER2- Ki67 4\%	A
10	2-3	Y	ER + PR- HER2- Ki67 N/A	Bi
11	N/A	Y	N/A	N/A
12	2	N	ER+ PR-HER2- Ki67 N/A	Bi
13	1-2	Y	ER + PR-HER2- Ki67 3\%	Bi
14	2-3	Y	ER+ PR+ HER2- Ki67 4\%	A
15	N/A	Y	ER + PR+ HER2- Ki67 5\%	A
16	2	Y	ER+ PR+ HER2- Ki67 6\%	A
17	2	Y	ER- PR- HER2-Ki67 10-15\%	T
18	2-3	Y	ER + PR-HER2-Ki67 2\%	Bi
19	1-2	Y	ER+ PR+ HER2- Ki67 2\%	A
20	N/A	Y	ER+ PR+ HER2+ Ki67 15\%	Bii
21	N/A	Y	ER+ PR- HER2- Ki67 20\%	Bi
22	3	Y	ER+ PR+ HER2+ Ki67 40\%	Bii
23	3	N	ER+ PR-HER2- Ki67 N/A	Bi
24	2-3	Y	ER+ PR- HER2- Ki67 4\%	Bi
25	NA	Y	ER + PR+ HER2- Ki67 5-7\%	A
26	3	Y	ER + PR- HER2- Ki67 6-7\%	Bi
27	1-2	Y	ER- PR- HER2- Ki67 10\%	T
28	2	N	ER + PR+ HER2- Ki67 5\%	A
29	N/A	Y	ER + PR+ HER2- Ki67 7\%	A
30	N/A	Y	ER- PR- HER2- Ki67 40\%	T
31	2	Y	ER+ PR- HER2- Ki67 20\%	Bi

Y, yes; N, no; Bii, luminal B (ii); A, luminal A; T, triple neg; Bi, luminal B (i).

