

Figure S1 Consort diagram of literature review. Breakdown of the numbers of study results from initial literature search as well as number of studies excluded after reviewing abstracts and full papers.

Article	Study description	Ν	Tested biomarker(s)	Results	Comparator non- sorafenib cohort?
lext generati (38)	on sequencing Cohort study	13	FGFR ¾ amplification	FGFR3/4 amplification predicts for response	N
(39)	Cohort study	127	341 cancer associated genes	PI3K-mTOR pathway alterations were associated with reduced DCR, PFS, OS	Y-Immune CPI
40) 41)	Cohort study Gene database	46	40 genes for DNA and RNA sequencing 1,319 differentially expressed genes	Average number of oncogene mutations predicts disease control, RNA expression of <i>TGFa</i> , <i>PECAM1</i> , and <i>NRG1</i> predicts PFS 8 hub genes for sorafenib resistant phenotype kininogen 1, vascular cell adhesion molecule 1, apolipoprotein C3, alpha 2-HS glycoprotein,	N N
42)	analysis Cohort study	45	FGFR genetic alterations	erb-b2 receptor tyrosine kinase 2, secreted protein acidic and cysteine rich, vitronectin and vimentin FGF19 copy number gain predicts CR	Ν
13)	Cohort study	42	Genomic profiling of 381 cancer associated genes	Cell cycle gene aberrations predicts lack of response	N
(44)	Cohort study	47	mRNA expression of the CSC genes <i>EpCAM</i> , <i>CD13</i> , <i>CK8</i> , <i>CD24</i> , <i>CD44</i> , <i>CD90</i> , <i>CD133</i> , <i>SALL4</i> , <i>ALDH1A1</i> , <i>ALB</i> , and <i>AFP</i>	High CD133/CD90 expression predicts OS (HR 2.97)	Ν
45) 46)	Cohort study Case report	151 1	Plasma cfDNA, genome wide CNA, VEGFA amplification Tumor neoantigens were identified using whole exome sequencing	cfDNA level predicts OS (HR 2.5), CNA predicts OS (HR 1.85) mutated IL-1 ^{S^{220F}} peptide and two additional neoepitopes from HELZ2 ^{V241M} and MLL2 ^{A4458V}	N N
sue IHC					
47) 48)	Cohort study Cohort study	39 93. 65	IHC for p-Jun, p-JNK, CD133 VEGFR-2, PDGFR-β, and c-Met	High levels of p-Jun, p-JNK, CD133 associated with worse response Low PDGFR-B associated with improved OS, high c-MET associated with improved PFS	N N
		received sorafenit			
(49) (50)	Phase 2 trial Cohort study	137 73	Tumor IHC pERK, blood cell-RNA microarray analysis Ki67, CK19, glutamine synthetase, VEGF, VCP, pERK	Higher pERK associated with longer TTP. No HR given. 18 genes in blood predicted 'progressors' Ki67 >20, CK19, VCP associated with OS	N N
51)	Cohort study	73 54	pERK, S6K, VEGFR2, PTEN	pERK≥3 predicts OS (HR 1.504)	N
(52)	Cohort study	50	p-c-Jun	p-c-Jun high predicts OS (HR 2.3)	N
(53) (54)	Cohort study Phase 3 trials	39 77	OCT-1 β-catenin glutamine synthetase (GS), phosphorylated extracellular signal regulated kinase (pERK), phosphorylated v-akt murine thymoma viral oncogene homolog (pAKT) and FLK-1, KDR/VEGFR-2	Tumor cell IHC staining for OCT-1 predicts improved OS. No effect measure reported pERK predicts OS (HR 2.09), VEGFR-2 predicts OS (HR 2.28)	N N
(55)	Cohort study	35	VEGFR1, 2 expression	Lack of VEGFR1,2 predicts poor OS	Ν
(56)	Cohort study	44	Mcl-1, activated/phosphorylated extracellular signal-regulated kinase (pERK) 1/2, and activated/phosphorylated AKT (pAKT MYC and MET by FISH	pERK predicts OS (HR 1.013), MCL-1 predicts OS (HR 1.016)	Ν
(57) (58)	Cohort study Cohort study	83 41	HTATIP2, microvessel density CXCR4 expression	High HTATIP2 and low microvessel density predicts poor OS High CXCR4 expression predicts better OS	N N
(59)	Cohort study	94	EDN1 expression	High EDN1 predicts OS (HR 2.374)	N
irculating tu (60)	nor cells Cohort study	59	Circulating tumor IHC p-ERK, p-AKT	Patients with pERK ⁺ /pAkt [−] CTC	Ν
ood counts	,			Had improved DCR and PFS (HR 9.4)	
(61)	Phase 3 trial	170	Platelet count	Platelet count >150 predicts worse TTP HR 1.56	Ν
(62) (63)	Cohort study Cohort study	145 43	Baseline neutrophil lymphocyte ratio PBMC ROS and pERK	NLR≥4 HR 1.73 for OS PBMC ROS and pERK predicts response	N N- patients also received octreotide
(64)	Cohort study	56	Systemic immune-inflammation index, NLR, PLR	SII≥360 HR 2.99 for OS, NLR≥3 HR 2.36 for OS	LAR N
(64) (65)	Cohort study	161	neutrophil-to lymphocyte ratio (NLR), the derived NLR, the platelet-to-lymphocyte ratio	systemic immune-inflammation index (SII) $\geq 600 \times 10^9$ was independent predictor of OS (HR 1.72)	N
			(PLR), the monocyte-to-lymphocyte ratio (MLR), the prognostic nutritional index (PNI) and the systemic-immune inflammation index (SII		
66) 67)	Cohort study Cohort study	105 82	NLR NLR	NLR >3.5 predictive of OS (HR 0.5), AFP <1030 ng/mL predictive of OS (HR 1.93) NLR decline predicts PFS and OS (HR 0.479)	N N
(68)	Cohort study	442	NLR, RDW	NLR predicts OS (HR 1.218), and RDW predicts OS (HR 1.234)	Ν
(69) (70)	Cohort study Cohort study	19 154	PD-1 Tcells, Tregs, MDSCs, cytokines NLR	OS predicted by decrease in CD4/CD8+ PD-1+ Tcells and Foxp3+ Tregs NLR >2.3 predicts OS (HR 1.72)	N N
(71)	Phase 2	40	CEPs, CEC's	CEP predicts OS (HR 2.512) and PFS	N- Sorafenib+
(72)	Cohort study	142	MLR	MLR >0.35 predicts OS (HR 0.445), AFP predicts OS (HR 0.445)	metronomic chemo
oha-fetopro		544			N
(73) (74)	Phase 2 trial Cohort study	544 214	AFP AFP, NLR	AFP <200 had HR 0.679 for OS on multivariate testing AFP≥7 ng/mL HR for OS 1.64	N N
(75)	Phase 2 trial	1130	AFP	Log AFP ng/mL HR 1.087 for OS	N
(76) (77)	Cohort study Cohort study	320 225	AFP AFP	AFP reduction of >20% at 3 months predictive of OS HR 0.38 AFP >456 predicts OS (HR 1.76)	N N
(78)	Cohort study	254	AFP	AFP >200 ng/mL predicts OS (HR 1.45)	Ν
irculating pr (79)	otein Phase 2 trial of	60	Ang-2	Ang-2 >5,700 ng/mL had HR 2.43 for OS	Ν
()	sorafenib plus Trebananib				
(80) (81)	Cohort study Cohort study	101 23	IGF-1 Chromogranin-A, VEGF	Addition of IGF-1 to CP scoring system improved prediction of OS and PFS chromogranin A and VEGF were inversely correlated with response. No effect measure given	N N
(82)	Analysis of Sharp & AP trials	827	Clinical variables, albumin, AFP, ALP	HCV, Low NLR showed significant interaction with treatment	Y-placebo
(83)	Cohort study	62	VEGF-A, b FGF, sVEGFR2, Ang2, SDF1, VEGF-C, IL-6, IL-8, AFP, HGF, TSP1, BMP9	Ang2, sVEGFR2, IL-6, IL-8, AFP associated with OS	Ν
(84)	Cohort study	30	IGF-1	Baseline IGF-1 level predictive of TTP in sorafenib treated patients, but also in those receiving TACE	Y- TACE, BSC
(85) (86)	Phase 3 trial Cohort study	954 78	VEGF, ANG2, FGF 19, 21,23 IGF-I	VEGF, ANG2, FGF21 predictive of OS. FGF21 predictive of differential OS between sorafenib and lenvatinib Adding IGF-I levels to CP calculation increased prediction of OS	Y-lenvatinib N
(87)	Cohort study	48	18 cytokines	Increase in IL-8 and TNF-a predicts progression	Ν
(88)	Phase 3 trial- SHARP	602	Ang2, EGF, bFGF, VEGF, sVEGFR-2, sVEGFR-3, HGF, and s-c-KIT IGF-2 circulating Ras	None. High s-c-KIT or low HGF (P of interaction =0.081 and 0.073, respectively)	Y-placebo
(89)	Cohort study	91	TGF-B1	High baseline TGFB predicts poor OS and PFS. Not significant on multivariate analysis	N- receive sorafenik alone or with tegafu
(90)	Phase 2	83	IGF-1, IGF-2, IGFBP3	IGF-1	uracil N-Combined two trials. One of sorafe
					+ tegafur, One Bev+cape
91)	Phase 2	128	IL-6	IL-6 >4.28 pg/mL predicts OS (HR 2.594)	N-Sorafenib +metronomic chem
(92)	Cohort study	80	VEGF, HIF-1a	Higher VEGF, and HIF-1a predicts poor OS	Ν
(93) (94)	Cohort study Cohort study	124 133	Ang-2, VEGF, PDGFRb, HGF, CD117, LOXL2, bFGF, PIVKA-II CRP	Predictive model including BCLC stage, bFGF, log PIVKA-II, log HGF, etiology. C-index of 0.884 of tumor response CRP >1 mg/dL predicts OS (HR 3.31), AFP >400 mg/mL predicts OS (HR 2.76)	N N
(95)	Cohort study	165	CRP, AFP	CRP <1mg/dl predicts OS (HR 0.51), AFP <200 ng/mL predicts OS (HR 0.45)	Ν
(96)	Cohort study	39	EGF, bFGF, HGF, IFN- γ , IL-10, IL-12, IL-2, IL-4, IL-5, IL-6, IL-8, IP-10, MIG, PDGF-BB, SCF SDF1, TGF- β , TGF- α , TNF- α , and VEGF-A	Elevated IL-5, IL-8, CXCL9, PDGF-BB, TGF-α, and VEGF-A were associated with improved OS in sorafenib but not in hepatic artery infusional chemotherapy	Y- hepatic artery infusional
(97) (98)	Cohort study Cohort study	97 44	LDH Lipidomic analysis	Decrease in LDH predicts OS, TTP phosphatidylcholine (PC)[34:2], PC[34:3]a, PC[35:2], PC[36:4]a, PC[34:3e], acylcarnitine (Car)[18:0], cholesterol ester[20:2], and diacylglycerol	chemotherapy N N
				(DG)[34:2] predicts response	
(99)	Cohort study	34 115	EGF, FGF-2, G-CSF, IFN-v, IL-12p70, IL-8, IL-17A, IP-10, MCP-1, TNF-α, and VEGF	IL-17A >1.94pg/mL was predictive of PFS (HR 19.96), FGF-2 <20.57pg/mL was predictive of OS (HR 3.24)	
(100) (101)	Cohort study Cohort study	115 55	124 proteins VEGF, amphiregulin	CD5L, IGJ, LGALS3BP were predictive of sorafenib response (c-index >0.95) and not predictive of TACE response Decrease in amphiregulin level was associated with improved OS (HR 0.208)	Y-TACE N
(102)	Cohort study	120	Ang-2, FST, G-CSF, HGF, Leptin, PDGF-BB, PECAM-1, and VEGF (s)-c-KIT	Ang-2 predicts OS (HR 1.95) and PFS, more than 3 cytokines elevated predicts OS	Ν
(103)	Cohort study	80	FST, G-CSF, HGF, Leptin, PDGF-BB, PECAM-1, Ang-2, VEGF	High Ang2 HR 2.06, and high HGF HR 2.08 were associated with poor OS	N
(104) (105)	Cohort study Phase 3 trial	63 494	VEGF levels VEGFC, heregulin, soluble KIT EPGN and IGF2, VEGFA, HGF, amphiregulin, betacellulin,	VEGF decrease >5% at 8 weeks predicts OS (OR 10 for 1 year survival) HGF (HR 1.7), VEGFA (HR 1.4), KIT (HR 0.75) predict OS, and VEGFC (HR 0.6)	N N- half of patients
. ,		2.	EGF, epiregulin, hbEGF, TGF α , BFGF, and PDGF-BB		received additional erlotinib
(106)	Metanalysis	1202	VEGF	High VEGF HR 1.85 for OS. VEGF SNP associated with OS	N
iRNA (107)	Cohort study	20	miR-17-5p, miR-18a, miR-21, miR-34a, miR-122, miR-195, miR-210, miR-214, miR-221, miR-222, miR-223, miR-224, miR-140, miR-328	miR-224 predictive of PFS and OS	Ν
(108)	Cohort study	93	mIR-221	Lower baseline miR-221 predicts response	N
(109)	Cohort study	16	5 miRNAs	miR-181a-5p	N
(110)	Cohort study	64	522 miRNA from tissue	predicts OS (HR 0.267) miR-425-3p	Ν
(111)	Cohort study	24	miR-18a, miR-21, miR-139-5p, miR-221, miR-224, and miR-10b-3p	predicts PFS High baseline miR-10b-3p	Ν
		-7	,,	Predicts OS (HR 0.522) Not significant on multivariate testing	
NPs (24)	Cohort study	148	VEGF-A, VEGF-C and VEGFR-1,2,3	SNPs VEGF-A rs2010963 and VEGF-C rs4604006 predicts OS (HR 0.28, 0.25 respectively) and PFS on multivariate analysis	N
(25)	Cohort study	78	VEGFR2 (KDR) 18 SNPs	VEGFR2 rs1870377-AA (HR: 0.35) and rs2071559-CC (HR: 2.25) predict OS on multivariate analysis	Ν
(22)	Cohort study	128	eNOS polymorphisms	eNOS haplotype HT1: T-4b at <i>eNOS-786/eNOS</i> VNTR predicts OS on multivariate analysis (HR 7.03)	Ν
				ANGPT2 (Ang2 gene) rs55633437 predicts OS (HR 5.48), NOS3 rs2070744 predicts OS (HR 0.67) on multivariate analysis	N
(23)	Cohort study	135	Ang-2, NOS3 SNPs		N
(23) (112) (113)	Cohort study Cohort study Cohort study	135 210 47	Ang-2, NOS3 SNPs HIF-1α SNPs ABCB1 (rs2032582; rs1045642) and ABCG2 (rs2231137; rs2231142; rs2622604	HIF-1α rs12434438 no effect measure reported ABCB1 3435C>T, ABCG2 34G>A, ABCG2 1143C>T and ABCG2 421C>A. Trend towards prediction of progression. Not significant	N N

Studies identified by literature review assessing the prognostic ability of biomarkers in patients with advanced HCC treated with sorafenib against clinically relevant endpoints (either overall response rate, disease control rate, PFS or OS) with a statistically significant result. CPI, checkpoint inhibitor; DNA, deoxyribonucleic acid; RNA, ribonucleic acid; RNA, ribonucleic acid; miRNA, micro RNA; DCR, disease control rate; PFS, progression-free survival; CSC, cancer stem cell; cfDNA, circulating free DNA; CAN, copy number alteration; TTP, time to progression; HR, hazard ratio; IHC, immunohistochemistry; CTC, circulating tumor cell; PBMC, peripheral blood mononuclear cells; ROS, reactive oxygen species; SII, systemic immune inflammation index; NLR, neutrophil lymphocyte ratio; AFP, alpha-fetoprotein; MDSC, myeloid derived suppressor cell; CEC, circulating endothelial cell; CEP, circulating endothelial progenitor; RDW, red cell distribution width; MLR, mixed lymphocyte reaction; CP, Child Pugh; SNP, single nucleotide polymorphism; TACE, trans arterial chemoembolization; CRP, C reactive protein; HCV, hepatitis C virus; HCC, hepatocellular carcinoma.

References

- 38. Arao T, Ueshima K, Matsumoto K, et al. FGF3/FGF4 amplification and multiple lung metastases in responders to sorafenib in hepatocellular carcinoma. Hepatology 2013;57:1407-15.
- 39. Harding JJ, Nandakumar S, Armenia J, et al. Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies. Clin Cancer Res 2019;25:2116-26.
- 40. Sakai K, Takeda H, Nishijima N, et al. Targeted DNA and RNA sequencing of fine-needle biopsy FFPE specimens in patients with unresectable hepatocellular carcinoma treated with sorafenib. Oncotarget 2015;6:21636-44.
- 41. Huang D, Yuan W, Li H, et al. Identification of key pathways and biomarkers in sorafenib-resistant hepatocellular carcinoma using bioinformatics analysis. Exp Ther Med 2018;16:1850-8.
- 42. Kaibori M, Sakai K, Ishizaki M, et al. Increased FGF19 copy number is frequently detected in hepatocellular carcinoma with a complete response after sorafenib treatment. Oncotarget 2016;7:49091-8.
- 43. Kang W, Kim K, Lee JH, et al. Abstract 426: Targeted genome profiling in patients with advanced hepatocellular carcinoma treated with sorafenib. Cancer Res 2017;77:426.
- 44. Kim BH, Park JW, Kim JS, et al. Stem Cell Markers Predict the Response to Sorafenib in Patients with Hepatocellular Carcinoma. Gut Liver 2019;13:342-8.
- 45. Oh CR, Kong SY, Im HS, et al. Genome-wide copy number alteration and VEGFA amplification of circulating cell-free DNA as a biomarker in advanced hepatocellular carcinoma patients treated with Sorafenib. BMC Cancer 2019;19:292.
- 46. Vrecko S, Guenat D, Mercier-Letondal P, et al. Personalized identification of tumor-associated immunogenic neoepitopes in hepatocellular carcinoma in complete remission after sorafenib treatment. Oncotarget 2018;9:35394-407.
- 47. Hagiwara S, Kudo M, Nagai T, et al. Activation of JNK and high expression level of CD133 predict a poor response to sorafenib in hepatocellular carcinoma. Br J Cancer 2012;106:1997-2003.
- 48. Chu JS, Ge FJ, Zhang B, et al. Expression and prognostic value of VEGFR-2, PDGFR-β, and c-Met in advanced hepatocellular carcinoma. J Exp Clin Cancer Res 2013;32:16.
- 49. Abou-Alfa GK, Schwartz L, Ricci S, et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 2006;24:4293-300.
- 50. Claire C, Blanc JF, Bioulac-Sage P, et al. 996 predictive factors of response to sorafenib in hepatocellular carcinoma: a retrospective pilot study. J Hepatol 2012;56:S390.
- 51. Chen D, Zhao P, Li SQ, et al. Prognostic impact of pERK in advanced hepatocellular carcinoma patients treated with sorafenib. Eur J Surg Oncol 2013;39:974-80.
- 52. Chen W, Xiao W, Zhang K, et al. Activation of c-Jun predicts a poor response to sorafenib in hepatocellular carcinoma: Preliminary Clinical Evidence. Sci Rep 2016;6:22976.
- 53. Geier A, Macias RI, Bettinger D, et al. The lack of the organic cation transporter OCT1 at the plasma membrane of tumor cells precludes a positive response to sorafenib in patients with hepatocellular carcinoma. Oncotarget 2017;8:15846-57.
- 54. Negri FV, Dal Bello B, Porta C, et al. Expression of pERK and VEGFR-2 in advanced hepatocellular carcinoma and resistance to sorafenib treatment. Liver Int 2015;35:2001-8.
- 55. Peng S, Wang Y, Peng H, et al. Autocrine vascular endothelial growth factor signaling promotes cell proliferation and modulates sorafenib treatment efficacy in hepatocellular carcinoma. Hepatology 2014;60:1264-77.
- 56. Personeni N, Rimassa L, Pressiani T, et al. Molecular determinants of outcome in sorafenib-treated patients with hepatocellular carcinoma. J Cancer Res Clin Oncol 2013;139:1179-87.
- 57. Wang WQ, Liu L, Xu HX, et al. The combination of HTATIP2 expression and microvessel density predicts converse survival of hepatocellular carcinoma with or without sorafenib. Oncotarget 2014;5:3895-906.
- 58. Xu J, Liang J, Meng YM, et al. Vascular CXCR4 Expression Promotes Vessel Sprouting and Sensitivity to Sorafenib Treatment in Hepatocellular Carcinoma. Clin Cancer Res 2017;23:4482-92.
- 59. Yu SJ, Won J, Yoon JW, et al. Edn1 Expression as a Novel Biomarker for Predicting Sorafenib Responsiveness in Patients with Hepatocellular Carcinoma. J Hepatol 2016;64:S194.
- 60. Li J, Shi L, Zhang X, et al. pERK/pAkt phenotyping in circulating tumor cells as a biomarker for sorafenib efficacy in patients with advanced hepatocellular carcinoma. Oncotarget 2016;7:2646-59.
- 61. Abou-Alfa GK, Shi Q, Knox JJ, et al. Platelet count at baseline (Plt) and outcomes in patients (pts) with advanced hepatocellular carcinoma (HCC) treated with sorafenib (S) in CALGB80802 (Alliance) (C8). J Clin Oncol 2018;36:l:e16107.
- 62. Bruixola G, Niño OM, Diaz-Beveridge R, et al. Baseline neutrophil-to-lymphocyte ratio (NLR) and early toxicity as prognostic factors in advanced hepatocellular carcinoma patients treated with sorafenib. J Clin Oncol 2015;33:e15159.
- 63. Caraglia M, Giuberti G, Marra M, et al. Oxidative stress and ERK1/2 phosphorylation as predictors of outcome in hepatocellular carcinoma patients treated with sorafenib plus octreotide LAR. Cell Death Dis 2011;2:e150.
- 64. Casadei Gardini A, Scarpi E, Faloppi L, et al. Immune inflammation indicators and implication for immune modulation strategies in advanced hepatocellular carcinoma patients receiving sorafenib. Oncotarget 2016;7:67142-9.
- 65. Conroy G, Salleron J, Belle A, et al. The prognostic value of inflammation-based scores in advanced hepatocellular carcinoma patients prior to treatment with sorafenib. Oncotarget 2017;8:95853-64.
- 66. da Fonseca LG, Barroso-Sousa R, Bento Ada S, et al. Pre-treatment neutrophil-to-lymphocyte ratio affects survival in patients with advanced hepatocellular carcinoma treated with sorafenib. Med Oncol 2014;31:264.
- 67. Hong YM, Yoon KT, Hwang TH, et al. Changes in the neutrophil-to-lymphocyte ratio predict the prognosis of patients with advanced hepatocellular carcinoma treated with sorafenib. Eur J Gastroenterol Hepatol 2019;31:1250-5.
- 68. Howell J, Pinato DJ, Ramaswami R, et al. Integration of the cancer-related inflammatory response as a stratifying biomarker of survival

- 77. Nishikawa H, Nishijima N, Enomoto H, et al. Predictive factors in patients with hepatocellular carcinoma receiving sorafenib therapy using time-dependent receiver operating characteristic analysis. J Cancer 2017;8:378-87.
- 78. Sohn W, Paik YH, Cho JY, et al. Sorafenib therapy for hepatocellular carcinoma with extrahepatic spread: treatment outcome and prognostic factors. J Hepatol 2015;62:1112-21.
- 79. Abou-Alfa GK, Blanc JF, Miles S, et al. Phase II Study of First-Line Trebananib Plus Sorafenib in Patients with Advanced Hepatocellular Carcinoma. Oncologist 2017;22:780-e65.
- 80. Abugabal YI, Hassan M, Pestana R, et al. IGF-Child-Pugh score as a predictor of treatment outcome in advanced hepatocellular carcinoma patients treated with sorafenib. J Clin Oncol 2019;37:4076.
- 81. Antista M, Bellomo F, Pernice G, et al. 6563 POSTER Chromogranine a (CGA) Plus Vascular Endothelial Growth Factor (VEGF) as Predicting Factors (PF) of Sorafenib (SFB) Treatment of Multifocal Hepatocellular Carcinoma (M-HCC) in Elderly Patients. Eur J Cancer 2011;47.
- 82. Llovet JM, Peña CE, Lathia CD, et al. Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. Clin Cancer Res 2012;18:2290-300.
- 83. Chelis L, Anagnostopoulos K, Trypsianis G, et al. Circulating biomarkers of sorafenib efficacy in advanced HCC. J Clin Oncol 2013;31:302.
- 84. Elmashad N, Ibrahim WS, Mayah WW, et al. Predictive value of serum insulin-like growth factor-1 in hepatocellular carcinoma. Asian Pac J Cancer Prev 2015;16:613-9.
- 85. Finn RS, Kudo M, Cheng AL, et al. Final analysis of serum biomarkers in patients (pts) from the phase III study of lenvatinib (LEN) vs sorafenib (SOR) in unresectable hepatocellular carcinoma (uHCC) [REFLECT]. Ann Oncol 2018;29:viii17-8.
- 86. Kaseb A, Abdel-Wahab R, Hassan M, et al. A prospective biomarker study to assess IGF-1 score ability to sub-stratify Child-Turcotte-Pugh classes and predict response to systemic therapy in hepatocellular carcinoma. J Clin Oncol 2017;20;35:e15662.
- 87. Iida-Ueno A, Enomoto M, Uchida-Kobayashi S, et al. Changes in plasma interleukin-8 and tumor necrosis factor-α levels during the early treatment period as a predictor of the response to sorafenib in patients with unresectable hepatocellular carcinoma. Cancer Chemother Pharmacol 2018;82:857-64.
- 88. Llovet JM, Peña CEA, Lathia CD, et al. Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. Clin Cancer Res 2012;18:2290-300.
- 89. Lin TH, Shao YY, Chan SY, et al. High Serum Transforming Growth Factor-B1 Levels Predict Outcome in Hepatocellular Carcinoma Patients Treated with Sorafenib. Clin Cancer Res 2015;21:3678-84.
- 90. Shao YY, Huang CC, Lin SD, et al. Serum insulin-like growth factor-1 levels predict outcomes of patients with advanced hepatocellular carcinoma receiving antiangiogenic therapy. Clin Cancer Res 2012;18:3992-7.
- 91. Shao YY, Lin H, Li YS, et al. High plasma interleukin-6 levels associated with poor prognosis of patients with advanced hepatocellular carcinoma. Jpn J Clin Oncol 2017;47:949-53.
- 92. El Shorbagy S, Haggag R, Abutaleb F, et al. Prognostic significance of VEGF and HIF 1 ? in hepatocellular carcinoma patients receiving sorafenib versus metformin sorafenib combination. Ann Oncol 2017;28:iii54.
- 93. Kim HY, Lee DH, Lee JH, et al. Novel biomarker-based model for the prediction of sorafenib response and overall survival in advanced hepatocellular carcinoma: a prospective cohort study. BMC Cancer 2018;18:307.
- 94. Kinoshita A, Onoda H, Imai N, et al. Comparison of the prognostic value of inflammation-based prognostic scores in patients with hepatocellular carcinoma. Br J Cancer 2012;107:988-93.
- 95. Nakanishi H, Kurosaki M, Tsuchiya K, et al. Novel Pretreatment Scoring Incorporating C-reactive Protein to Predict Overall Survival in Advanced Hepatocellular Carcinoma with Sorafenib Treatment. Liver Cancer 2016;5:257-68.
- 96. Hayashi T, Yamashita T, Terashima T, et al. Serum cytokine profiles predict survival benefits in patients with advanced hepatocellular carcinoma treated with sorafenib: a retrospective cohort study. BMC Cancer 2017;17:870.
- 97. Sacco R, Mismas V, Granito A, et al. Correlation between LDH levels and response to sorafenib in HCC patients: an analysis of the ITA. LI.CA database. Int J Biol Markers 2015;30:e65-72.
- 98. Saito K, Ikeda M, Kojima Y, et al. Lipid profiling of pre-treatment plasma reveals biomarker candidates associated with response rates and hand-foot skin reactions in sorafenib-treated patients. Cancer Chemother Pharmacol 2018;82:677-84.
- 99. Cho HJ, Kim SS, Nam JS, et al. Higher serum interleukin-17A levels as a potential biomarker for predicting early disease progression in patients with hepatitis B virus-associated advanced hepatocellular carcinoma treated with sorafenib. Cytokine 2017;95:118-25.
- 100.Kim H, Yu SJ, Yeo I, et al. Prediction of Response to Sorafenib in Hepatocellular Carcinoma: A Putative Marker Panel by Multiple Reaction Monitoring-Mass Spectrometry (MRM-MS). Mol Cell Proteomics 2017;16:1312-23.
- 101. Godin C, Bodeau S, Saidak Z, et al. Early decrease in serum amphiregulin or vascular endothelial growth factor levels predicts sorafenib efficacy in hepatocellular carcinoma. Oncol Rep 2019;41:2041-50.
- 102. Miyahara K, Nouso K, Tomoda T, et al. Predicting the treatment effect of sorafenib using serum angiogenesis markers in patients with hepatocellular carcinoma. J Gastroenterol Hepatol 2011;26:1604-11.
- 103.Adachi T, Nouso K, Miyahara K, et al. Prospective evaluation of the factors predicting the prognosis of advanced hepatocellular carcinoma (HCC) patients treated with sorafenib. J Clin Oncol 2017;35:e15674.
- 104. Tsuchiya K, Asahina Y, Matsuda S, et al. Changes in plasma vascular endothelial growth factor at 8 weeks after sorafenib administration as predictors of survival for advanced hepatocellular carcinoma. Cancer 2014;120:229-37.
- 105. Zhu AX, Kang YK, Rosmorduc O, et al. Biomarker Analyses of Clinical Outcomes in Patients with Advanced Hepatocellular Carcinoma Treated with Sorafenib with or without Erlotinib in the SEARCH Trial. Clin Cancer Res 2016;22:4870-9.
- 106. Cao G, Li X, Qin C, et al. Prognostic Value of VEGF in Hepatocellular Carcinoma Patients Treated with Sorafenib: A Meta-Analysis. Med Sci Monit 2015;21:3144-51.
- in hepatocellular carcinoma treated with sorafenib. Oncotarget 2017;8:36161-70.
- 69. Kalathil SG, Hutson A, Barbi J, et al. Augmentation of IFN-7+ CD8+ T cell responses correlates with survival of HCC patients on sorafenib therapy. JCI Insight 2019;4:e130116.
- 70. Lué A, Serrano MT, Bustamante FJ, et al. Neutrophil-to-lymphocyte ratio predicts survival in European patients with hepatocellular carcinoma administered sorafenib. Oncotarget 2017;8:103077-86.
- 71. Shao YY, Lin ZZ, Chen TJ, et al. High circulating endothelial progenitor levels associated with poor survival of advanced hepatocellular carcinoma patients receiving sorafenib combined with metronomic chemotherapy. Oncology 2011;81:98-103.
- 72. Zhu Z, Xu L, Zhuang L, et al. Role of monocyte-to-lymphocyte ratio in predicting sorafenib response in patients with advanced hepatocellular carcinoma. Onco Targets Ther 2018;11:6731-40.
- 73. Abdel-Rahman O. Impact of baseline characteristics on outcomes of advanced HCC patients treated with sorafenib: a secondary analysis of a phase III study. J Cancer Res Clin Oncol 2018;144:901-8.
- 74. Afshar M, Clarke H, Jackson-Wilding A, et al. P0352 : Neutrophil lymphocyte ratio (NLR) at diagnosis is a predictor for survival in patients receiving sorafenib for advanced hepatocellular carcinoma (HCC): A large UK cohort. J Hepatol 2015;62:S442.
- 75. Berhane S, Toyoda H, Tada T, et al. Role of the GALAD and BALAD-2 Serologic Models in Diagnosis of Hepatocellular Carcinoma and Prediction of Survival in Patients. Clin Gastroenterol Hepatol 2016;14:875-886.e6.
- 76. Doyle A, Marsh P, Gill R, et al. Sorafenib in the treatment of hepatocellular carcinoma: a multi-centre real-world study. Scand J Gastroenterol 2016;51:979-85.
- 107. Gyöngyösi B, Végh É, Járay B, et al. Pretreatment MicroRNA Level and Outcome in Sorafenib-treated Hepatocellular Carcinoma. J Histochem Cytochem 2014;62:547-55.
- 108. Fornari F, Pollutri D, Patrizi C, et al. In Hepatocellular Carcinoma miR-221 Modulates Sorafenib Resistance through Inhibition of Caspase-3-Mediated Apoptosis. Clin Cancer Res 2017;23:3953-65.
- 109.Nishida N, Arizumi T, Hagiwara S, et al. MicroRNAs for the Prediction of Early Response to Sorafenib Treatment in Human Hepatocellular Carcinoma. Liver Cancer 2017;6:113-25.
- 110. Vaira V, Roncalli M, Carnaghi C, et al. MicroRNA-425-3p predicts response to sorafenib therapy in patients with hepatocellular carcinoma. Liver Int 2015;35:1077-86.
- 111. Yoon EL, Yeon JE, Ko E, et al. An Explorative Analysis for the Role of Serum miR-10b-3p Levels in Predicting Response to Sorafenib in Patients with Advanced Hepatocellular Carcinoma. J Korean Med Sci 2017;32:212-20.
- 112.Faloppi L, Puzzoni M, Casadei Gardini A, et al. Angiogenesis Genotyping and Clinical Outcomes in Patients with Advanced Hepatocellular Carcinoma Receiving Sorafenib: The ALICE-2 Study. Target Oncol 2020;15:115-26.
- 113. Tandia M, Mhiri A, Paule B, et al. Correlation between clinical response to sorafenib in hepatocellular carcinoma treatment and polymorphisms of P-glycoprotein (ABCB1) and of breast cancer resistance protein (ABCG2): monocentric study. Cancer Chemother Pharmacol 2017;79:759-66.
- 114.Lee YS, Kim BH, Kim BC, et al. SLC15A2 genomic variation is associated with the extraordinary response of sorafenib treatment: whole-genome analysis in patients with hepatocellular carcinoma. Oncotarget 2015;6:16449-60.

Table S2 Literature search results of candidate SNPS

Gene	SNP	Reference
ICAM1	rs1799969 (G241R), rs5498 (K469E)	(115-117)
IL1B	rs1143627 (IL1b- 31 T/C), rs16944 (-511T)	(118-120)
ILA	rs17561, rs143634, rs1800587, rs1143627	(121,122)
IL2	rs2069762 (-330A>C)	(123,124)
IL4	rs2243250, rs2070874	(125,126)
IL 6	rs1800795	(127,128)
IL 8	rs4073 (-251), rs2227306	(129,130)
IL 10	rs3024505, rs1800896, rs3024505, rs1800872 (IL -59)	(131,132)
IL12	rs3212227	(133,134)
L13	rs20541	(135,136)
L 17	rs2275913	(137,138)
Иср-1	rs1024611 (A2518G)	(139)
STAT3	rs3816769	(140,141)
nfkb	rs28362491	(142,143)
TNFa	rs1800629 (-308 G->A)	(144,145)
TGFB	rs1800469	(146,147)
CCL22	rs4359426	(148,149)
NOS	rs2297518	(150,151)
MMP 1	rs1799750	(152-158)
MMP 7	rs11568818	
MMP 9	rs17576	
MMP 12	rs2276109	
PDL1/PD1	rs11568821, rs11568821 (pd1.3), rs10204525 (pd1.6)	(159,160)
CTLA4 (CD80)	rs231775	(161)
ГІМЗ	rs1036199	(162)
Foxp3	rs3761548, rs2232365	(19,163,164)

No results were found for the following genes: VCAM1, EDNRA/B, EMAP2, Ang2, Tie2, IL-5, IL18, M-CSF (csf1), CSFR1, Sdf-1, Sema3a, NRP1, GCSF, GM-CSF, IFNa, OncostatinM, CCL2-5, CCR2, CXCL1-5, CXCL8-10, CXCL12, CXCL17, CCL11, CCL15, CCL28, CXCR3, CXCR4, Bv8, ARG1, IRF8, LAG3, ICOS, GITR, Galectin9, CD25. Candidate SNPs with functional activity identified from literature review of the immune signaling pathways of the HCC tumor immune microenvironment. SNP, single nucleotide polymorphism; HCC, hepatocellular carcinoma.

References

- 115. Schnabel RB, Lunetta KL, Larson MG, et al. The relation of genetic and environmental factors to systemic inflammatory biomarker concentrations. Circ Cardiovasc Genet 2009;2:229-37.
- 116. He Q, Lin X, Wang F, et al. Associations of a polymorphism in the intercellular adhesion molecule-1 (ICAM1) gene and ICAM1 serum levels with migraine in a Chinese Han population. J Neurol Sci 2014;345:148-53.
- 117. Bielinski SJ, Pankow JS, Li N, et al. ICAM1 and VCAM1 polymorphisms, coronary artery calcium, and circulating levels of soluble ICAM-1: the multi-ethnic study of atherosclerosis (MESA). Atherosclerosis 2008;201:339-44.
- 118. Jahid M, Rehan-Ul-Haq, Chawla D, et al. Association of polymorphic variants in IL1B gene with secretion of IL-1β protein and inflammatory markers in north Indian rheumatoid arthritis patients. Gene 2018;641:63-7.
- 119. Landvik NE, Hart K, Skaug V, et al. A specific interleukin-1B haplotype correlates with high levels of IL1B mRNA in the lung and increased risk of non-small cell lung cancer. Carcinogenesis 2009;30:1186-92.

bowel disease risk: A meta-analysis. J Dig Dis 2015;16:177-85.

- 140. Kotkowska A, Sewerynek E, Domańska D, et al. Single nucleotide polymorphisms in the STAT3 gene influence AITD susceptibility, thyroid autoantibody levels, and IL6 and IL17 secretion. Cell Mol Biol Lett 2015;20:88-101.
- 141. Ferguson LR, Han DY, Fraser AG, et al. Genetic factors in chronic inflammation: single nucleotide polymorphisms in the STAT-JAK pathway, susceptibility to DNA damage and Crohn's disease in a New Zealand population. Mutat Res 2010;690:108-15.
- 142.Gao M, Wang CH, Sima X, et al. NFKB1 -94 insertion/ deletion ATTG polymorphism contributes to risk of systemic lupus erythematosus. DNA Cell Biol 2012;31:611-5.
- 143. Yang X, Li P, Tao J, et al. Association between NFKB1 -94ins/del ATTG Promoter Polymorphism and Cancer Susceptibility: An Updated Meta-Analysis. Int J Genomics 2014;2014:612972.
- 144. Garrity-Park MM, Loftus EV Jr, Bryant SC, et al. Tumor necrosis factor-alpha polymorphisms in ulcerative

120.Su H, Rei N, Zhang L, et al. Meta-analyses of IL1A polymorphisms and the risk of several autoimmune diseases published in databases. PLoS One 2018;13:e0198693.

121. Zhang AQ, Pan W, Gao JW, et al. Associations between interleukin-1 gene polymorphisms and sepsis risk: a metaanalysis. BMC Med Genet 2014;15:8.

122. Liu W, Wang C, Tang L, et al. Associations between Gene Polymorphisms in Pro-inflammatory Cytokines and the Risk of Inflammatory Bowel Disease: A Meta-analysis. Immunol Invest 2021;50:869-83.

123. Singh PK, Kumar V, Ahmad MK, et al. Association of -330 interleukin-2 gene polymorphism with oral cancer. Indian J Med Res 2017;146:730-7.

124. Yousefi A, Mahmoudi E, Baradaran Noveiry B, et al. Autoimmune hepatitis association with single nucleotide polymorphism of interleukin-2, but not interferon-gamma. Clin Res Hepatol Gastroenterol 2018;42:134-8.

125. Tang Y, Yang L, Qin W, et al. Validation study of the association between genetic variant of IL4 and severe radiation pneumonitis in lung cancer patients treated with radiation therapy. Radiother Oncol 2019;141:86-94.

126. Yousefi A, Mahmoudi E, Zare Bidoki A, et al. IL4 gene polymorphisms in Iranian patients with autoimmune hepatitis. Expert Rev Gastroenterol Hepatol 2016;10:659-63.

127. Dar SA, Haque S, Mandal RK, et al. Interleukin-6-174G > C (rs1800795) polymorphism distribution and its association with rheumatoid arthritis: A case-control study and meta-analysis. Autoimmunity 2017;50:158-69.

128. Bhat IA, Qasim I, Masoodi KZ, et al. Significant impact of IL-6 -174G/C but inverse relation with -634 C/G polymorphism in patients with non-small cell lung cancer in Kashmiri population. Immunol Invest 2015;44:349-60.

129. Savage SA, Abnet CC, Mark SD, et al. Variants of the IL8 and IL8RB genes and risk for gastric cardia adenocarcinoma and esophageal squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 2004;13:2251-7.

130. Hu D, Wang H, Huang X, et al. Investigation of association between IL-8 serum levels and IL8 polymorphisms in Chinese patients with sepsis. Gene 2016;594:165-70.

131. Wang AH, Lam WJ, Han DY, et al. The effect of IL-10 genetic variation and interleukin 10 serum levels on Crohn's disease susceptibility in a New Zealand population. Hum Immunol 2011;72:431-5.

132. Karimabad MN, Arababadi MK, Hakimizadeh E, et al. Is the IL-10 promoter polymorphism at position -592 associated with immune system-related diseases? Inflammation 2013;36:35-41.

133.Kaarvatn MH, Vrbanec J, Kulic A, et al. Single nucleotide polymorphism in the interleukin 12B gene is associated with risk for breast cancer development. Scand J Immunol 2012;76:329-35.

134. Youssef SS, Mostafa A, Saad A, et al. Impact of IL12B gene rs 3212227 polymorphism on fibrosis, liver inflammation, and response to treatment in genotype 4 Egyptian hepatitis C patients. Dis Markers 2013;35:431-7.

135. Shirkani A, Mansouri A, Farid Hosseini R, et al. The Role of Interleukin-4 and 13 Gene Polymorphisms in Allergic Rhinitis: A Case Control Study. Rep Biochem Mol Biol 2019;8:111-8.

136. Wang R, Lu YL, Huang HT, et al. Association of interleukin 13 gene polymorphisms and plasma IL 13 level with risk of systemic lupus erythematosus. Cytokine 2018;104:92-7.

137.Xu H, Pan Y, Li W, et al. Association between IL17A and IL17F polymorphisms and risk of Henoch-Schonlein purpura in Chinese children. Rheumatol Int colitis-associated colorectal cancer. Am J Gastroenterol 2008;103:407-15.

145. Aoki T, Hirota T, Tamari M, et al. An association between asthma and TNF-308G/A polymorphism: meta-analysis. J Hum Genet 2006;51:677-85.

146. Celedón JC, Lange C, Raby BA, et al. The transforming growth factor-beta1 (TGFB1) gene is associated with chronic obstructive pulmonary disease (COPD). Hum Mol Genet 2004;13:1649-56.

147. Vuong MT, Lundberg S, Gunnarsson I, et al. Genetic variation in the transforming growth factor-beta1 gene is associated with susceptibility to IgA nephropathy. Nephrol Dial Transplant 2009;24:3061-7.

148. Wang G, Yu D, Tan W, et al. Genetic polymorphism in chemokine CCL22 and susceptibility to Helicobacter pylori infection-related gastric carcinoma. Cancer 2009;115:2430-7.

149. Hirota T, Saeki H, Tomita K, et al. Variants of C-C motif chemokine 22 (CCL22) are associated with susceptibility to atopic dermatitis: case-control studies. PLoS One 2011;6:e26987.

150. Jorge YC, Duarte MC, Silva AE. Gastric cancer is associated with NOS2 -954G/C polymorphism and environmental factors in a Brazilian population. BMC Gastroenterol 2010;10:64.

151. Tu YC, Ding H, Wang XJ, et al. Exploring epistatic relationships of NO biosynthesis pathway genes in susceptibility to CHD. Acta Pharmacol Sin 2010;31:874-80.

152. Liu D, Guo H, Li Y, et al. Association between polymorphisms in the promoter regions of matrix metalloproteinases (MMPs) and risk of cancer metastasis: a meta-analysis. PLoS One 2012;7:e31251.

153.Kazantseva MG, Hung NA, Highton J, et al. MMP expression in rheumatoid inflammation: the rs11568818 polymorphism is associated with MMP-7 expression at an extra-articular site. Genes Immun 2013;14:162-9.

154.T T, D D, A A, et al. Association of the MMP7 -181A>G Promoter Polymorphism with Early Onset of Chronic Obstructive Pulmonary Disease. Balkan J Med Genet 2017;20:59-66.

155. Tesfaigzi Y, Myers OB, Stidley CA, et al. Genotypes in matrix metalloproteinase 9 are a risk factor for COPD. Int J Chron Obstruct Pulmon Dis 2006;1:267-78.

156.Hu Z, Huo X, Lu D, et al. Functional polymorphisms of matrix metalloproteinase-9 are associated with risk of occurrence and metastasis of lung cancer. Clin Cancer Res 2005;11:5433-9.

157. Haq I, Chappell S, Johnson SR, et al. Association of MMP-2 polymorphisms with severe and very severe COPD: a case control study of MMPs-1, 9 and 12 in a European population. BMC Med Genet 2010;11:7.

158. Tacheva T, Dimov D, Aleksandrova E, et al. MMP12 -82 A>G Promoter Polymorphism in Bronchial Asthma in a Population of Central Bulgaria. Lab Med 2018;49:211-8.

159. Zou Y, Zhang Z, Liu Y, et al. Are programmed cell death 1 gene polymorphisms correlated with susceptibility to rheumatoid arthritis?: A meta-analysis. Medicine (Baltimore) 2017;96:e7805.

160. Gao J, Gai N, Wang L, et al. Meta-analysis of programmed cell death 1 polymorphisms with systemic lupus erythematosus risk. Oncotarget 2017;8:36885-97.

161.Li G, Shi F, Liu J, et al. The effect of CTLA-4 A49G polymorphism on rheumatoid arthritis risk: a metaanalysis. Diagn Pathol 2014;9:157.

162. Razi B, Reykandeh SE, Alizadeh S, et al. TIM family gene polymorphism and susceptibility to rheumatoid arthritis: Systematic review and meta-analysis. PLoS One 2019;14:e0211146.

163. Zhang Y, Zhang J, Liu H, et al. Meta-analysis of FOXP3 gene rs3761548 and rs2232365 polymorphism and multiple sclerosis susceptibility. Medicine (Baltimore) 2019:98:e17224. 164. Song P, Wang XW, Li HX, et al. Association between FOXP3 polymorphisms and vitiligo in a Han Chinese population. Br J Dermatol 2013;169:571-8.

2016;36:829-35. 138. Nordang GB, Viken MK, Hollis-Moffatt JE, et al. Association analysis of the interleukin 17A gene in Caucasian rheumatoid arthritis patients from Norway and New Zealand. Rheumatology (Oxford) 2009;48:367-70. 139.Li YW, Yang CQ, Xiao YL, et al. The -A2518G polymorphism in the MCP-1 gene and inflammatory

© Translational Gastroenterology and Hepatology. All rights reserved.

Table S3 Chromosomal location	ons, positions and biolo	ogical effects of investig	gated SNPs
-------------------------------	--------------------------	----------------------------	------------

SNP ID	Gene	Chr.	Gene position/ effect	Codon exchange	Aa. exchange
rs4604006	VEGFC	4	Intron variant		
rs2010963	VEGFA	6	5 prime UTR		
rs2070744	NOS3	7	Upstream transcript variant		
rs1799983	NOS3	7	Missense variant	GAT>GAA	D>E
rs55633437	ANGPT2	8	Synonymous variant		
rs1870377	VEGFR2	4	Missense Variant	CAA>CAT	Q>H
rs2071559	VEGFR2	4	Upstream Variant		
rs10204525	PDCD1	2	3 Prime UTR Variant		
rs1024611	CCL2	17	5 prime UTR		
rs1036199	TIM-3	5	Missense	CGG>CTG	R>L
rs1143627	IL1B	2	5 Prime UTR Variant		
rs1143634	IL1B	2	Synonymous Variant		
rs11568818	MMP7	11	Upstream variant		
rs11568821	PDCD1	2	Intron variant		
rs16944	IL1B	2	Upstream variant		
rs17561	IL1A	2	Missense variant	GCA>TCA	A>S
rs17576	MMP9	20	Missense variant	CAG>CCG	Q>L
rs1799750	MMP1	11	Upstream variant		
rs1799969	ICAM1	19	Missense variant	GGG>AGG	G>R
rs1800469	TGFB1	19	Upstream variant		
rs1800587	IL1A	2	Upstream variant		
rs1800629	TNF	6	Upstream variant		
rs1800795	IL6	7	Intron variant		
rs1800872	IL19	1	Intron variant		
rs1800896	IL19	1	Intron variant		
rs20541	IL13	5	Missense variant	CAG>CCG	Q>P
rs2069762	IL2	4	Upstream variant		
rs2070874	IL4	5	5 Prime UTR Variant		
rs2227306	CXCL8	4	Intron variant		
rs2232365	FOXP3	х	Intron variant		
rs2243250	IL4	5	Upstream variant		
rs2275913	IL17A	6	Upstream variant		
rs2276109	MMP12	11	Upstream variant		
rs2297518	NOS2	17	Missense variant	TCG>TTG	S>L
rs231775	CTLA4	2	Missense variant	ACC>GCC	T>A
rs28362491	NFKB1	4	Upstream variant		
rs3024505	IL10	1	Downstream variant		
rs3212227	IL12B	5	3 Prime UTR Variant		
rs3761548	FOXP3	Х	Intron variant		
rs3816769	STAT3	17	Intron variant		
rs4073	CXCL8	4	Upstream variant		
rs4359426	CCL22	16	Missense variant	GAT>GCT	D>A
rs5498	ICAM1	19	Missense variant	AAG>GAG	K>E

UTR, untranslated region; SNP, single nucleotide polymorphism.

NP alidation SNPs	Genotypes (%)	MAF	HWE
rs4604006	CC/CT/TT (43/44/13)	General population T=0.46 Study population T=0.35	P=0.397840
rs2010963	CC/CG/GG (12/47/41)	General population C=0.37 Study population C=0.37	P=0.635833
rs2070744	CC/CT/TT (11/36/52)	General population C=0.35 Study population C=0.29	P=0.033202
rs1799983	GG/GT/TT (62/31/7)	General population T=0.31 Study population T=0.22	P=0.119858
rs55633437	CC/CA/AA (89/10/1)	General population A=0.04 Study population A=0.07	P=0.250854
rs1870377	AA/AT/TT (11/38/51)	General population A=0.24 Study population A=0.30	P=0.145978
rs2071559	GG/GA/AA (27/41/31)	General population G=0.5 Study population G=0.46	P=0.005423
xploratory SNPs rs10204525		General population T=0.16	P=0.000274
	TT/TC/CC (13/31/54)	Study population T=0.30	
rs1024611	AA/AG/GG (49/35/16)	General population G=0.28 Study population G=0.33	P=0.000283
rs1036199	CC/CA/AA (2/18/80)	General population C=0.17 Study population C=0.11	P=0.522681
rs1143634	GG/GA/AA (74/22/4)	General population A=0.23 Study population A=0.15	P=0.014409
rs11568818	CC/CT/TT (16/37/47)	General population C=0.44 Study population C=0.33	P=0.004298
rs11568821	CC/CT/TT (87/12/1)	General population T=0.07 Study population T=0.07	P=0.148283
rs16944	GG/GA/AA (36/48/16)	General population A=0.36 Study population A=0.40	P=0.999253
rs17561	CC/CA/AA (65/28/7)	General population A=0.29 Study population A=0.21	P=0.018087
rs17576	AA/AG/GG (34/36/31)	General population G=0.36 Study population G=0.48	P=0.000002
rs1799750	CC/C.DEL/DEL.DEL (32/49/19)	General population DEL=0.49 Study population DEL=0.44	P=0.915367
rs1799969	AA/AG/GG (1/11/88)	General population A=0.1 Study population A=0.07	P=0.340442
rs1800469	GG/GA/AA (36/46/18)	General population A=0.23 Study population A=0.41	P=0.341747
rs1800587	AA/AG/GG (7/29/64)	General population A=0.28 Study population A=0.22	P=0.036665
rs1800629	AA/AG/GG (1/21/77)	General population A=0.15 Study population A=0.12	P=0.644290
rs1800795	CC/CG/GG (8/33/59)	General population C=0.36 Study population C=0.25	P=0.090537
rs1800872	GG/GT/TT (42/41/17)	General population T=0.29 Study population T=0.37	P=0.032667
rs1800896	CC/CT/TT (12/39/49)	General population C=0.45 Study population C=0.32	P=0.107408
rs20541	AA/AG/GG (10/40/50)	General population A=0.21 Study population A=0.3	P=0.447726
rs2069762	CC/CA/AA (15/43/41)	General population C=0.29 Study population C=0.36	P=0.257217
rs2070874	CC/CT/TT (51/26/23)	General population T=0.17	P=0.000000
rs2227306	CC/CT/TT (45/44/11)	Study population T=0.36 General population T=0.36	P=0.784191
rs2232365	CC/CT/TT (51/8/41)	Study population T=0.33 General population T=0.39	P=0.000000
rs2243250	CC/CT/TT (50/25/24)	Study population T=0.45 General population T=0.19	P=0.000000
rs2275913	GG/GA/AA (39/44/17)	Study population T=0.37 General population A=0.33	P=0.169334
rs2276109	TT/TC/CC (86/12/2)	Study population A=0.39 General population C=0.07	P=0.000623
rs2297518	GG/GA/AA (74/24/2)	Study population C=0.08 General population A=0.19	P=0.971112
rs231775	AA/AG/GG (31/49/20)	Study population A=0.14 General population G=0.37	P=0.763588
rs28362491	ATTG.ATTG/ATTG.DEL/DEL.DEL	Study population G=0.44 General population DEL=0.42	P=0.632494
rs3024505	(40/46/15) GG/GA/AA (79/21/0)	Study population DEL=0.37 General population A=0.14	P=0.164468
rs3212227	GG/GT/TT (15/35/50)	Study population A=0.11 General population G=0.22	P=0.000718
rs3761548	GG/GT/TT (58/7/35)	Study population G=0.22 General population T=0.25	P=0.000000
		Study population T=0.39	
rs3816769	CC/CT/TT (17/44/39)	General population C=0.33 Study population C=0.39	P=0.242653
rs4073	TT/TA/AA (37/44/19)	General population T=0.49 Study population T=0.59	P=0.191191
rs4359426	CC/CA/AA (85/14/1)	General population A=0.05 Study population A=0.08	P=0.755725
rs5498	GG/GA/AA (16/44/40)	General population G=0.43 Study population G=0.38	P=0.247505

SNP, single nucleotide polymorphism.

Variable	Catagorias		PFS	PFS		OS		
valiable	Categories	Median (months)	Hazard ratio (95% CI)	P value*	Median (months)	Hazard ratio (95% CI)	P value*	
Age	≥66.5	5.5	0.83 (0.61-1.14)	0.25	18.5	0.77 (0.52-1.1)	0.19	
	<66.5	4.0			12.6			
Sex	Male	5.3	0.85 (0.56-1.29)	0.45	16.1	0.88 (0.55-1.4)	0.59	
	Female	4.1			12.8			
Hepatitis status	HBV positive	4.0	1.25 (0.7-1.79)	0.23	18	0.94 (0.6-1.5)	0.81	
	HBV negative	5.5			13.7			
	HCV positive	5.45	0.84 (0.60-1.18)	0.32	15.4	0.94 (0.6-1.4)	0.75	
	HCV negative	4.8			14.9			
Child-Pugh	5	5.13	Reference	P=0.88	19.2	Reference	0.02	
	6	5.06	1.11 (0.76-1.61)		9.6	1.96 (1.27-3.04)		
	7	5.32	1.27 (0.64-2.51)		11.9	1.74 (0.84-3.6)		
	8		n/a			n/a		
ECOG	0	5.32	Reference	0.24	17.6	Reference	0.26	
	1	4.0	1.21 (0.88-1.67)		12.6	1.3 (0.9-1.9)		
	2		n/a			n/a		
BCLC	А	17.5	Reference	0.58	18.0	Reference	0.33	
	В	5.3	1.98 (0.56-6.96)		13.4	4 (0.5-31)		
	С	5.1	1.86 (0.57-6.10)		14.9	3.8 (0.5-27)		
T stage	0	4.6	Reference	0.75	43.3	Reference	0.08	
	1	3.5	2.27 (0.55-9.27)		23.2	3.00 (0.60-14.93)		
	2	5.3	1.46 (0.61-3.49)		18.1	1.98 (0.60-6.56)		
	3	5.2	1.46 (0.63-3.37)		12.9	3.12 (0.98-10.00)		
	4	2.8	2.06 (0.61-6.83)		11.9	4.55 (1.00-20.64)		
PVT	Yes	5.3	0.90 (0.65-1.23)	0.49	13	1.4 (0.9-2)	0.11	
	No	4.8			18			
Extrahepatic	Yes	3.9	1.26 (0.92-1.74)	0.14	13.3	1.06 (0.7-1.6)	0.74	
disease	No	5.5			18			
AFP	≥200	3.7	1.11 (0.80-1.54)	0.54	13.0	1.09 (0.7-1.6)	0.67	
	<200	5.7			15.4			
NLR	≥3	4.8	1.13 (0.80-1.61)	0.48	12.8	1.3 (0.95-1.6)	0.06	
	<3	5.3			18.9			

Table S5 Univariable anal	ysis and statistical significance of clinica	al variables against PFS and OS in	sorafenib treated patients

*, P values for cox proportional hazards model testing. HBV, hepatitis B virus; HCV, hepatitis C virus; AFP, alpha-fetoprotein; NLR, neutrophil-lymphocyte ratio; ECOG, eastern cooperative oncology group; PVT, portal vein thrombosis; PFS, progression-free survival; OS, overall survival.

Variable	PFS, hazard ratio (P value)	OS, hazard ratio (P value)	
Gender (male)	0.66 (0.10)	0.58 (0.06)	
Child-Pugh Score			
6 <i>vs.</i> 5	0.88 (0.57)	1.48 (0.15)	
7 vs. 5	1.18 (0.66)	2.07 (0.08)	
T stage			
2 vs. 1	1.35 (0.58)	3.9 (0.08)	
3 <i>vs.</i> 1	2.21 (0.14)	8.8 (0.007)	
4 vs. 1	2.90 (0.12)	12.3 (0.008)	
Portal vein thrombus	0.63 (0.09)	0.77 (0.42)	
AFP	1.04 (0.24)	1.04 (0.23)	
NLR	1.10 (0.47)	1.24 (0.19)	
SNPs			
rs1870377	1.27 (0.12)	1.02 (0.93)	
rs1024611	0.86 (0.28)	0.67 (0.02)	
rs1800896	0.76 (0.05)	0.66 (0.02)	
rs231775	1.22 (0.20)	1.13 (0.51)	
rs28362491	1.33 (0.045)	1.34 (0.11)	

Table S6 Multivariable analysis of clinical variables, validation SNPs and exploratory SNPs for Sorafenib treated patients

PFS, progression-free survival; OS, overall survival; AFP, alpha-fetoprotein; NLR, neutrophil lymphocyte ratio; SNP, single nucleotide polymorphism.

Characteristic	Categories	Number (total N=147)
Gender, n (%)	Male	121 (82)
	Female	26 (18)
Age, year, median (range)		67.4 (34.6–86.0)
Ethnicity, n (%)	Asian/pacific islander	47 (32)
	Caucasian	79 (54)
	Black	1 (1)
	Latino	4 (2)
	Aboriginal	0
	Other	3 (2)
	Mixed	0
	Missing	13 (9)
Etiology, n (%)	HBV	32 (22)
	HCV	50 (34)
	Alcohol	36 (24)
	NAFLD	24 (16)
	Other	4 (4)
BCLC, n (%)	А	28 (19)
	В	110 (75)
	С	9 (6)
	Missing	0
Serum AFP, n (%)	≥200	41
	<200	105
	Missing	1
Prior therapy, n (%)	Surgical resection	23 (16)
	RFA	65 (44)
	TACE	0
	Radiation	29 (20)
	Transplant	0
Multifocal, n (%)	Yes	123 (84)
	No	24 (16)
PVT, n (%)	Yes	8 (5)
	No	137 (93)
	Missing	2 (2)
Child-Pugh score, n (%)	A5	113 (77)
	A6	31 (21)
	B7	2 (2)
	≥B8	0
Extrahepatic disease, n (%)	Yes	3 (2)
	No	144 (98)
NLR, n (%)	≥3	53
	<3	93
	Missing	1

Table S7 Demographic and clinical characteristics of patients treated with TACE

HBV, hepatitis B virus; HCV, hepatitis C virus; NAFLD, non-alcoholic fatty liver disease; AFP, alpha-fetoprotein; RFA, radiofrequency ablation; TACE, trans arterial chemoembolization; NLR, neutrophil-lymphocyte ratio; PVT, portal vein thrombosis; PFS, progression-free survival; OS, overall survival.

Variable	Value	Median PFS (months)	Hazard ratio (95% CI)	P value	Median OS (months)	Hazard ratio (95% CI)	P value
Age	≥67.4	5.5	0.98 (0.96–0.99)	0.03	28.8	0.99 (0.97–1.03)	1
	<67.4	3.9 (P=0.62)			26.2		
Sex	Male	4.5	1.096 (0.71–1.69)	0.7	25.8	1.06 (0.59–1.88)	0.9
	Female	4.5			30.7		
Etiology	HBV positive	4.3	1.01 (0.67–1.53)	1	46.2	0.6 (0.3–1.05)	0.06
	HBV negative	4.7			25.5		
	HCV positive	4.4	0.99 (0.7–1.4)	0.9	25.5	1.2 (0.7–1.9)	0.5
	HCV negative	4.7			29		
Child-Pugh	5	4.7	Reference	0.7	30.3	Reference	0.1
	6	4.2	1.2 (0.78–1.8)		21.0	1.7 (1.009–2.8)	
	7	5.1	1.4 (0.34–5.6)		3.8	1.8 (0.24–12.9)	
ECOG	0	5	Reference	0.4	46.2	Reference	0.1
	1	4.4	0.82 (0.58–1.2)		23.9	1.5 (0.98–2.4)	
	2	3.5	1.2 (0.49–3)		5.5	2.3 (0.32–17.3)	
BCLC	А	6	Reference	0.03	30.7	Reference	0.3
	В	4.1	1.68 (1.08–2.6)		24.3	1.4 (0.84–2.59)	
	С	6.1	0.99 (0.46–2.2)		27.5	1.7 (0.7–4.1)	
PVT	Yes	2.4	1.2 (0.58–2.5)	0.6	21.6	1.8 (0.77–4.1)	0.2
	No	4.7			27.5		
AFP	≥200	4	1.05 (0.98–1.1)	0.2	21.6	1.09 (1.009–1.18)	0.03
	<200	4.7 (P=0.1)			29		
NLR	≥3	3.8	0.8 (0.59–1.2)	0.4	23.5	1.3 (0.82–2.06)	0.3
	<3	4.6 (P=0.03)			30.3		

Table S8 Univariable analysis and statistical significance of clinical variables against PFS and OS in TACE treated patients

HBV, hepatitis B virus; HCV, hepatitis C virus; NAFLD, non-alcoholic fatty liver disease; AFP, alpha-fetoprotein; TACE, trans arterial chemoembolization; NLR, neutrophil-lymphocyte ratio; ECOG, Eastern Cooperative Oncology Group; PVT, portal vein thrombosis; PFS, progression-free survival; OS, overall survival.

Table S9 Univariable analysis validation and exploratory SNPs- TACE treated patients

0	Orantimore (0()	Median PFS (months)				Median OS (months)			
Gene	Genotypes (%)	Wt.	Het.	Homo.	P value	Wt.	Het.	Homo.	P value
NOS3 rs2070744	CC/CT/TT (15/54/76)	4	4.4	9	0.06, 0.039	28.8	25.8	27.5	0.9, 0.84
<i>TNF</i> rs1800629	AA/AG/GG (2/32/111)	4.5	4.4	4	*0.4, *0.48	23.9	45	41	*0.01, *0.007
<i>IL-13</i> rs20541	AA/AG/GG (13/62/70)	5	4.1	3.9	0.4, 0.48	25.5	30.7	45	0.2, 0.048
<i>NFKB</i> rs28362491	ATTG.ATTG/ATTG.DEL/DEL. DEL (60/66/19)	4.1	5.1	4.8	1, 0.78	25.8	24.3	28.8	0.1, 0.044

*, logrank statistical test, *, nested LR statistical test. SNP, single nucleotide polymorphism; TACE, trans arterial chemoembolization; PFS, progression-free survival; OS, overall survival; wt, wild type; Het, heterozygous; Homo, homozygous; LR, likelihood ratio.

Appendix 1 REMARK Checklist for scoring the quality of the study: Marisi G, Petracci E, Raimondi F, *et al. ANGPT2* and *NOS3* Polymorphisms and Clinical Outcome in Advanced Hepatocellular Carcinoma Patients Receiving Sorafenib (23)

Item	to be reported	Page no.	Comment
INT	RODUCTION		
1	State the marker examined, the study objectives, and any pre-specified hypotheses.	1	Discusses aim to determine prognostic value of SNPs within defined genes
MA	FERIALS AND METHODS		
Pati	ents		
2	Describe the characteristics (e.g., disease stage or co-morbidities) of the study patients, including their source and inclusion and exclusion criteria.	5	Intermediate/advanced HCC treated with sorafenib. Describes recruitment center, eligibility criteria stated
3	Describe treatments received and how chosen (e.g., randomized or rule-based).	1	Describes all got sorafenib
Spe	cimen characteristics		
4	Describe type of biological material used (including control samples) and methods of preservation and storage.	1	DNA extracted from whole blood, in EDTA tubes. No description of preservation
Assa	ay methods		
5	Specify the assay method used and provide (or reference) a detailed protocol, including specific reagents or kits used, quality control procedures, reproducibility assessments, quantitation methods, and scoring and reporting protocols. Specify whether and how assays were performed blinded to the study endpoint.	1	DNA extracted using QIAamp DNA Minikit, quality control with nanodrop 1000, genotyping on ABI 3130 Genetic Analyzer. Analysis blinded
Stud	dy design		
6	State the method of case selection, including whether prospective or retrospective and whether stratification or matching (e.g., by stage of disease or age) was used. Specify the time period from which cases were taken, the end of the follow-up period, and the median follow-up time.	\$	Retrospective, case selection described, 2012-2015, median f/u 8.9mo
7	Precisely define all clinical endpoints examined.	1	PFS, OS described
8	List all candidate variables initially examined or considered for inclusion in models.	Х	No description of candidate variables
9	Give rationale for sample size; if the study was designed to detect a specified effect size, give the target power and effect size.	Х	No rationale given
Stat	istical analysis methods		
10	Specify all statistical methods, including details of any variable selection procedures and other model-building issues, how model assumptions were verified, and how missing data were handled.	1	Describes using log rank test and cox proportional hazards model. Describes model was built using variables significant on univariable analysis
11	Clarify how marker values were handled in the analyses; if relevant, describe methods used for cutpoint determination.	1	categorical
RES	SULTS		
Data	a		
12	Describe the flow of patients through the study, including the number of patients included in each stage of the analysis (a diagram may be helpful) and reasons for dropout. Specifically, both overall and for each subgroup extensively examined report the numbers of patients and the number of events.	Х	
13	Report distributions of basic demographic characteristics (at least age and sex), standard (disease-specific) prognostic variables, and tumor marker, including numbers of missing values.	1	Table 1 describes basic characteristics including missing data
Ana	lysis and presentation		
14	Show the relation of the marker to standard prognostic variables.	Х	Not shown
15	Present univariable analyses showing the relation between the marker and outcome, with the estimated effect (e.g., hazard ratio and survival probability). Preferably provide similar analyses for all other variables being analyzed. For the effect of a tumor marker on a time-to-event outcome, a Kaplan-Meier plot is recommended.	J	
16	For key multivariable analyses, report estimated effects (e.g., hazard ratio) with confidence intervals for the marker and, at least for the final model all other variables in the model	1	

- 17 Among reported results, provide estimated effects with confidence intervals from an analysis in which the marker and standard prognostic variables are included, regardless of their statistical significance.
- 18 If done, report results of further investigations, such as checking assumptions, sensitivity analyses, and internal validation.

model, all other variables in the model.

DISCUSSION

- 19 Interpret the results in the context of the pre-specified hypotheses and other relevant studies; include a discussion of limitations of the study.
- 20 Discuss implications for future research and clinical value.

Includes nonsignificant clinical variables in final model

X Not reported

1

- Describes exisisting basic science research on ANPT2 and NOS3 snps, as well as data on prognostic significance in other cancers, and other snps studied in HCC
- X Does not describe how studies could validate the predictive use of these markers or how could use in clinic

© Translational Gastroenterology and Hepatology. All rights reserved.

Appendix 2 REMARK Checklist for scoring the quality of the study: Casadei Gardini A, Marisi G, Faloppi L, *et al.* eNOS polymorphisms and clinical outcome in advanced HCC patients receiving sorafenib: final results of the ePHAS study (22)

clinical outcome in advanced HCC patients receiving sorafenib: final results of the ePHAS study (22)							
	n to be reported	Page no.	Comment				
INTRODUCTION							
1	State the marker examined, the study objectives, and any pre-specified hypotheses.	1	States SNPs of interest and states the aim of investigating the prognostic value				
MATERIALS AND METHODS							
Pat	ients						
2	Describe the characteristics (e.g., disease stage or co-morbidities) of the study patients, including their source and inclusion and exclusion criteria.	1	Describes included stages and that must be refractory to local treatments, describes recruitment centers, inclusion criteria stated				
3	Describe treatments received and how chosen (e.g., randomized or rule- based).	Х	Only described that all patients received sorafenib				
Specimen characteristics							
4	Describe type of biological material used (including control samples) and methods of preservation and storage.	1	Used whole blood or FFPE. did not describe storage methods				
Ass	ay methods						
5	Specify the assay method used and provide (or reference) a detailed protocol, including specific reagents or kits used, quality control procedures, reproducibility assessments, quantitation methods, and scoring and reporting protocols. Specify whether and how assays were performed blinded to the study endpoint.	1	Describes kits for processing, QIAmp DNA minikit or Recoverall, DNA quality assessed by Nanodrop 1000, sequencing on 7500 realtime PCR system (applied biosystems). Does not describe blinding				
Stu	dy design						
6	State the method of case selection, including whether prospective or retrospective and whether stratification or matching (e.g., by stage of disease or age) was used. Specify the time period from which cases were taken, the end of the follow-up period, and the median follow-up time.	1	Retrospective, no matching, specifies time period of collection, median follow up 50 months				
7	Precisely define all clinical endpoints examined.	1	PFS, OS described				
8	List all candidate variables initially examined or considered for inclusion in models.	1	age, gender, etiology, Barcelona-Clinic Liver Cancer [BCLC] stage, serum $\alpha\text{-FP}$ level and MELD score				
9	Give rationale for sample size; if the study was designed to detect a specified effect size, give the target power and effect size.	х	Not mentioned				
Statistical analysis methods							
10	Specify all statistical methods, including details of any variable selection procedures and other model-building issues, how model assumptions were verified, and how missing data were handled.	Х	Does not describe variable selection procedures, just states clinical covariates were included in model. Does not describe assumption verification or missing data				
11	Clarify how marker values were handled in the analyses; if relevant, describe methods used for cutpoint determination.	1	Categorical				
RES	SULTS						
Dat	a						
12	Describe the flow of patients through the study, including the number of patients included in each stage of the analysis (a diagram may be helpful) and reasons for dropout. Specifically, both overall and for each subgroup extensively examined report the numbers of patients and the number of events.	Х					
13	Report distributions of basic demographic characteristics (at least age and sex), standard (disease-specific) prognostic variables, and tumor marker, including numbers of missing values.	1	Includes <i>Table 1</i> and mentions missing values				
Ana	lysis and presentation						
14	Show the relation of the marker to standard prognostic variables.	х					
15	Present univariable analyses showing the relation between the marker and outcome, with the estimated effect (e.g., hazard ratio and survival probability). Preferably provide similar analyses for all other variables being analyzed. For the effect of a tumor marker on a time-to-event outcome, a Kaplan-Meier plot is recommended.	1					
16	For key multivariable analyses, report estimated effects (e.g., hazard ratio) with confidence intervals for the marker and at least for the final model all	1	Gives HR in multivariate model for snps but				

other variables in the model.

with confidence intervals for the marker and, at least for the final model, all

- 17 Among reported results, provide estimated effects with confidence intervals from an analysis in which the marker and standard prognostic variables are included, regardless of their statistical significance.
- 18 If done, report results of further investigations, such as checking assumptions, sensitivity analyses, and internal validation.
- DISCUSSION
- 19 Interpret the results in the context of the pre-specified hypotheses and other relevant studies; include a discussion of limitations of the study.
- 20 Discuss implications for future research and clinical value.
- Includes validation cohort of separate patients. Does not mention sensitivity analysis

not for other variables

1

1

- Describes one other study of SNPs as biomarkers for HCC, describes basic science research on eNOS. Describes weakness
- X Discussed results as predictive when they are prognostic

 $\ensuremath{\mathbb{O}}$ Translational Gastroenterology and Hepatology. All rights reserved.

Appendix 3 REMARK Checklist for scoring the quality of the study: Scartozzi M, Faloppi L, Svegliati Baroni G, *et al.* VEGF and VEGFR genotyping in the prediction of clinical outcome for HCC patients receiving sorafenib: the ALICE-1 study (24)

Item t	o be reported	Page no.	Comment
INTRO	DUCTION		
1	State the marker examined, the study objectives, and any pre-specified hypotheses.	1	Criteria for selection and SNP list specified. Hypothesis not clearly stated
MATE	RIALS AND METHODS		
Patien	ts		
2	Describe the characteristics (e.g., disease stage or co-morbidities) of the study patients, including their source and inclusion and exclusion criteria.	1	Exclusion criteria not stated
3	Describe treatments received and how chosen (e.g., randomized or rule- based).	1	Described all patients received sorafenib
Speci	men characteristics		
4	Describe type of biological material used (including control samples) and methods of preservation and storage.	1	HCC tissue blocks or whole blood, preservation method not stated
Assay	methods		
5	Specify the assay method used and provide (or reference) a detailed protocol, including specific reagents or kits used, quality control procedures, reproducibility assessments, quantitation methods, and scoring and reporting protocols. Specify whether and how assays were performed blinded to the study endpoint.	✓	Commercial assay methods specified. Personnel performing tests were blinded
Study	design		
6	State the method of case selection, including whether prospective or retrospective and whether stratification or matching (e.g., by stage of disease or age) was used. Specify the time period from which cases were taken, the end of the follow-up period, and the median follow-up time.	1	Stated dates of collection, and that patients with intermediate-advanced HCC were chosen, retrospectively. Follow up time stated
7	Precisely define all clinical endpoints examined.	1	PFS, OS defined
В	List all candidate variables initially examined or considered for inclusion in models.	\checkmark	Lists examined variables
9	Give rationale for sample size; if the study was designed to detect a specified effect size, give the target power and effect size.	1	Calculates sample size based on absence of progression at 6months
Statis	tical analysis methods		
10	Specify all statistical methods, including details of any variable selection procedures and other model-building issues, how model assumptions were verified, and how missing data were handled.	х	States model was created using variables significant on univariable testing. Does not comment on missing data handling or verification of model assumptions
11	Clarify how marker values were handled in the analyses; if relevant, describe methods used for cutpoint determination.	1	Categorical variables (snps)
RESU	ILTS		
Data			
12	Describe the flow of patients through the study, including the number of patients included in each stage of the analysis (a diagram may be helpful) and reasons for dropout. Specifically, both overall and for each subgroup extensively examined report the numbers of patients and the number of events.	х	No flow diagram or comment on dropout
13	Report distributions of basic demographic characteristics (at least age and sex), standard (disease-specific) prognostic variables, and tumor marker, including numbers of missing values.	1	Prognostic variable distribution listed, does not describe missing values
Analys	sis and presentation		
14	Show the relation of the marker to standard prognostic variables.	х	No association between SNPs and other prognostic variables
15	Present univariable analyses showing the relation between the marker and outcome, with the estimated effect (e.g., hazard ratio and survival probability). Preferably provide similar analyses for all other variables being analyzed. For the effect of a tumor marker on a time-to-event outcome, a Kaplan-Meier plot is recommended.	✓	
16	For key multivariable analyses, report estimated effects (e.g., hazard ratio) with confidence intervals for the marker and, at least for the final model, all other variables in the model.	1	HR given with p value but no Cl
17	Among reported regults, provide estimated effects with confidence	V	Only included eignificent progratic

- 17 Among reported results, provide estimated effects with confidence intervals from an analysis in which the marker and standard prognostic variables are included, regardless of their statistical significance.
- 18 If done, report results of further investigations, such as checking assumptions, sensitivity analyses, and internal validation.

DISCUSSION

- 19 Interpret the results in the context of the pre-specified hypotheses and other relevant studies; include a discussion of limitations of the study.
- 20 Discuss implications for future research and clinical value.

- X Only included significant prognostic variables in final model
- X Not described
- X Limitations discussed. Did not comment on other studies associating VEGF SNPs with clinical outcomes
- ✓ Discusses finding prognostic and recommends validation

© Translational Gastroenterology and Hepatology. All rights reserved.

Appendix 4 REMARK Checklist for scoring the quality of the study: Zheng YB, Zhan MX, Zhao W, *et al.* The relationship of kinase insert domain receptor gene polymorphisms and clinical outcome in advanced hepatocellular carcinoma patients treated with sorafenib (25)

Item	to be reported	Page no.	Comment				
INTE	RODUCTION						
1	State the marker examined, the study objectives, and any pre- specified hypotheses.	1	Stated marker (KDR polymorphisms) and objective to determine prognostic effects on TTP, OS				
MATERIALS AND METHODS							
Patients							
2	Describe the characteristics (e.g., disease stage or co-morbidities) of the study patients, including their source and inclusion and exclusion criteria.	1	HCC diagnosed by AASLD guidelines, metastatic/locally advanced not curable and received sorafenib. Excluded if medical comorbidities but did not define				
3	Describe treatments received and how chosen (e.g., randomized or rule-based).	1	All patients received sorafenib, dose described and basis for dose adjustments				
Specimen characteristics							
4	Describe type of biological material used (including control samples) and methods of preservation and storage.	1	Peripheral blood in tube with anticoagulant stored at -80c				
Assa	ay methods						
5	Specify the assay method used and provide (or reference) a detailed protocol, including specific reagents or kits used, quality control procedures, reproducibility assessments, quantitation methods, and scoring and reporting protocols. Specify whether and how assays were performed blinded to the study endpoint.	1	DNA isolated using Qiagen DNA Isolation Kit according to manufacturer. Genotyping was carried out using the iPLEX Gold™ assay on the MassARRAY Platform. PCR protocol described. Genotyping blinded				
Stua	ly design						
6	State the method of case selection, including whether prospective or retrospective and whether stratification or matching (e.g., by stage of disease or age) was used. Specify the time period from which cases were taken, the end of the follow-up period, and the median follow-up time.	1	Retrospective, patients admitted to local hospital between Jan 2010 and Mar 2013. Median follow up described				
7	Precisely define all clinical endpoints examined.	1	Described method for assessing response (mRECIST) and defines TTP and OS				
8	List all candidate variables initially examined or considered for inclusion in models.	Х					
9	Give rationale for sample size; if the study was designed to detect a specified effect size, give the target power and effect size.	Х					
Stati	istical analysis methods						
10	Specify all statistical methods, including details of any variable selection procedures and other model-building issues, how model assumptions were verified, and how missing data were handled.	Х	Described the use of log rank testing and CPH model but did not describe model building or verification, missing data				
11	Clarify how marker values were handled in the analyses; if relevant, describe methods used for cutpoint determination.	1					
RES	ULTS						
Data							
12	Describe the flow of patients through the study, including the number of patients included in each stage of the analysis (a diagram may be helpful) and reasons for dropout. Specifically, both overall and for each subgroup extensively examined report the numbers of patients and the number of events.	Х					
13	Report distributions of basic demographic characteristics (at least age and sex), standard (disease-specific) prognostic variables, and tumor marker, including numbers of missing values.	1	Included in Table 2				
Analysis and presentation							
14	Show the relation of the marker to standard prognostic variables.	х					
15	Present univariable analyses showing the relation between the marker and outcome, with the estimated effect (e.g., hazard ratio and survival probability). Preferably provide similar analyses for all other variables being analyzed. For the effect of a tumor marker on a time-to-event outcome, a Kaplan-Meier plot is recommended.	1	<i>Table 4</i> shows univariate analyses. Kaplan Meier plots presented				
16	For key multivariable analyses, report estimated effects (e.g., hazard	1	Table 5				

- ratio) with confidence intervals for the marker and, at least for the final model, all other variables in the model.
- 17 Among reported results, provide estimated effects with confidence intervals from an analysis in which the marker and standard prognostic variables are included, regardless of their statistical significance.
- 18 If done, report results of further investigations, such as checking assumptions, sensitivity analyses, and internal validation.

DISCUSSION

- 19 Interpret the results in the context of the pre-specified hypotheses and other relevant studies; include a discussion of limitations of the study.
- 20 Discuss implications for future research and clinical value.

Not all prognostic variables included in multivariable model

Х

Х

- Provides an overview of literature describing functional effects of KDR SNPs, descripes limitations
- ✓ Discusses need for validation given small sample size and that results may help tailor treatment with sorafenib

 $\ensuremath{\mathbb{O}}$ Translational Gastroenterology and Hepatology. All rights reserved.