Supplementary

Table S1 Comparison of PC derived EVs vs. other cancer biomarkers

Potential biomarker	Sample type	Diagnostic value in PC patients	Advantages	Disadvantages	References
Carbohydrate antigen 19-9 (CA19-9)	Serum	Sensitivity: 79-81%; Specificity: 82-90%	Relatively easy collection; reliable marker for treatment response and monitoring	Poor screening marker; elevated expression in benign jaundice, pancreatitis, ovarian cancer or other malignancies	(1)
Circulating tumour cells (CTCs)	Serum/plasma	Sensitivity: 75%; Specificity: 96.4%; AUC: 0.867; 95% CI: 0.798-0.935	Correlated with poor prognosis	Low concentration in serum/plasma; Lack of evidence in large scale clinical setting; variable in isolation techniques	(2-4)
Cell free DNA (cfDNA)	Plasma	Combination of 5mC and 5hmC prediction model Sensitivity: 93.8%; Specificity: 95.5%; AUC: 0.99		Utility is limited to identifying existing mutation in clinical setting; Lacks evidence in large scale clinical setting	(5)
Extracellular vesicles (EVs)	Plasma/serum/pancreatic juice	GPC1+ study: Sensitivity: 95-100%; Specificity: 95-100%	Correlated to early detection, prognostic marker and potential tumour staging marker	Variability in isolation techniques; Lacks evidence in high quality isolation in clinical setting	(6-17)

AUC, area under curve.

Table S2 Potential EV biomarkers in pancreatic cancer

Type of EV cargo	EV content	Experimental Approach	Sample Type	PC patient sample size	Sensitivity and specificity	Relevance to PC	Reference
Micro RNA (miRNA)	miR-1246, miR-3976, miR-4644, miR-4306	RT-PCR, qRT-PCR	Serum samples and PC cell lines	miR-1246, miR-4644 and miR-4306: Patients: 12. miR-3976: Patients: 131	miR-1246: Sensitivity: 66.7%, Specificity:100%, AUC: 0.814. miR-4644: Sensitivity: 75%, Specificity: 76.9%, AUC: 0.76	Elevated expression	(13,15,18)
	miR-18a	qRT-PCR	Patient plasma samples	Patients: 36	Not available	Elevated expression	(19,20)
	miR-17-5p	qRT-PCR	Patient serum samples	Patients: 22	Sensitivity: 72.7%, Specificity: 92.6%	Correlated to advanced stage of PC	(21)
	miR-122-5p	qRT-PCR	Patient plasma samples	Patients: 216	AUC: 0.81	Diagnostic marker	(7)
	miR-let7a	LC-MS/MS, qRT-PCR	Patient plasma samples	Patients: 29	Sensitivity: 100%, Specificity	Lower expression linked to PC progression	(22,23)
	miR-191, miR-451a and miR-21	qRT-PCR	Patient plasma samples	Patients: 32	miR-191: Sensitivity: 71.9%, Specificity: 84.2%. miR-451a: Sensitivity: 65.6%, Specificity: 85.7%. miR-21: Sensitivity: 80.7%, Specificity: 81.0%	Elevated expression	(24)
	miR-21	Western Blotting, TCLN biochip	Patient plasma and mouse serum sample	es Patients: 36	Sensitivity: 95.5%, Specificity: 81.5%	Elevated expression	(25)
	miR-451a	qRT-PCR	Patient serum samples	Patients: 6	Sensitivity: 69.2%, Specificity: 70.8%	Elevated expression	(26)
	miR-196b/LCN2/TIMP1	RT-PCR	Patient serum and duodenal juice	Patients: 50	Sensitivity: 80%, Specificity: 80%, AUC: 0.93	Elevated expression	(27)
	miR-214	qRT-PCR	Patient plasma samples	Patients: 20	Not available	Lower expression linked to better survival rate. Diagnostic marker	(28)
	Ratio of miR-3940-5p/miR-8069	3D digital PCR	Patient urine samples	Patients: 43	Sensitivity: 58.1%, Specificity: 89.2%	Diagnostic marker	(29)
	miR-192-5p, miR-19a-3p, and miR-19b-3p	qRT-PCR	Patient serum samples	Patients: 159	Not available	Elevated expression; Diagnostic and prognostic value	(30)
	miR-10b, miR-21, miR-30c, miR- 181a	LSPR-based assay	Patient plasma samples	Patients: 29	Sensitivity: 100%, Specificity: 100%	Diagnostic marker	(22)
Circular RNA (circ RNA)	has_circ_0000896 and has_ circ_0000128	qRT-PCR	Patient plasma and cell culture samples	Patients: 8	Not available	Elevated expression	(31)
	circRNA-PDE8A	RNA binding protein immunoprecipitation assay, Biotinylated RNA pulldown assays	Patient plasma samples	Patients: 93	Not available	Elevated expression; correlated PC progression	(32)
	circ-IARS	qRT-PCR	Patient plasma, tissue and cell culture samples	Patients: 92	Not available	Elevated expression	(33)
	circRNA-0000069	Flow-cytometry, Western blotting, RT- qPCR	Patient tissue and cell culture samples	Patients: 179	Not available	Elevated expression	(34)

Table S2 (continued)

Table S2 (continued)

Type of EV cargo	EV content	Experimental Approach	Sample Type	PC patient sample size	Sensitivity and specificity	Relevance to PC	Reference
mRNA	CK18, CD63	Next Generation sequencing and qRT-PC	RPatient plasma samples	Patients: 89	AUC: 0.93	Detected in PDAC patients	(35)
	FGA, KRT19, HIST1H2BK, ITIH2, MARCH2, CLDN1, MAL2 and TIMP1	RNA sequencing analysis	Patient plasma samples	Patients: 284	AUC: 0.949	Detected in PDAC patients	(36)
Proteins	Glypican-1	UPLC-MS, Western Blot Analysis, qRT- PCR	Patient serum and tissue samples, Anima studies, cell lines	I Patients: 190	Sensitivity: 100%, Specificity: 100%	Diagnostic/Screening tool	(6)
	MIF	Proteomics, RNA sequencing, tissue processing, immunofluorescence, SDS- PAGE, Western Blot, flow cytometry	Human peripheral blood samples, animal studies and Cell lines	Patients: 18	Not available	Initiates formation of pre- metastatic niche in the liver	(37)
DNA	NOTCH1, BRCA2	Next generation sequencing	Patient pleural fluid, blood, plasma	Patient: 3	Not available	Detected in patient exoDNA samples	(38)
	KRAS ^{G12D} and TP53 ^{R273H}	ddPCR	Patient serum samples	Patients: 171	Not available	Elevated expression	(39)
	KRAS	ddPCR	Patient plasma samples	Patients: 194	Not available	Detected in PC patients	(40)
	KRAS	ddPCR	Patient plasma samples	Patients: 88	Not available	Elevated expression	(41)

GPC1+, glypican-1; RT-PCR, reverse transcriptase polymerase chain reaction; qRT-PCR, quantitative real time polymerase chain reaction; LC-MS/MS, Liquid chromatography-mass spectrometry; TCLN biochip, tethered cationic lipoplex nanoparticle biochip; LSPR-based assay, localized surface plasmon resonance based assay; UPLC-MS, ultra performance liquid chromatography mass spectrometry; SDS-PAGE, sodium dodecyl-sulfate polyacrylamide gel electrophoresis; ddPCR, droplet digital polymerase chain reaction; MIF, migration inhibitory factor; AUC, area under curve.

Table S3 Preclinical and clinical trials of PC derived EVs

Disease Model	Trial	Pharmacological drug	Administration	References
Mouse	Preclinical	siPAK4	Intratumoral injection	(42)
Mouse	Preclinical	Gemcitabine	Intravenous injection	(43)
Mouse	Preclinical	siKRASG12D	Intraperitoneal injection	(44)
Mouse	Preclinical	siKRASG12D	Intraperitoneal injection	(45)
Mouse	Preclinical	siKRASG12D and miRNA-145-5p	Intratumoral injection	(46)
Human	Clinical (Phase 1)	siRNA KrasG12D	Intravenous injection	(47)

References

- 1. Poruk KE, Gay DZ, Brown K, et al. The clinical utility of CA 19-9 in pancreatic adenocarcinoma: diagnostic and prognostic updates. Curr Mol Med 2013;13:340-51.
- Zhao X, Ma Y, Dong X, et al. Molecular characterization of circulating tumor cells in pancreatic ductal adenocarcinoma: potential diagnostic and prognostic significance in clinical practice. Hepatobiliary Surg Nutr 2021;10:796-810.
- 3. Ankeny JS, Court CM, Hou S, et al. Circulating tumour cells as a biomarker for diagnosis and staging in pancreatic cancer. Br J Cancer 2016;114:1367-75.
- Riva F, Dronov OI, Khomenko DI, et al. Clinical applications of circulating tumor DNA and circulating tumor cells in pancreatic cancer. Mol Oncol 2016;10:481-93.
- Cao F, Wei A, Hu X, et al. Integrated epigenetic biomarkers in circulating cell-free DNA as a robust classifier for pancreatic cancer. Clin Epigenetics 2020;12:112.
- 6. Melo SA, Luecke LB, Kahlert C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015;523:177-82.
- Zhou X, Lu Z, Wang T, et al. Plasma miRNAs in diagnosis and prognosis of pancreatic cancer: A miRNA expression analysis. Gene 2018;673:181-93.
- Yang KS, Im H, Hong S, et al. Multiparametric plasma EV profiling facilitates diagnosis of pancreatic malignancy. Sci Transl Med 2017;9:eaal3226.
- Vikramdeo KS, Anand S, Khan MA, et al. Detection of mitochondrial DNA mutations in circulating mitochondria-originated extracellular vesicles for potential diagnostic applications in pancreatic adenocarcinoma. Sci Rep 2022;12:18455.
- Tao L, Zhou J, Yuan C, et al. Metabolomics identifies serum and exosomes metabolite markers of pancreatic cancer. Metabolomics 2019;15:86.
- Sonohara F, Yamada S, Takeda S, et al. Exploration of Exosomal Micro RNA Biomarkers Related to Epithelialto-Mesenchymal Transition in Pancreatic Cancer. Anticancer Res 2020;40:1843-53.
- Sakaue T, Koga H, Iwamoto H, et al. Glycosylation of ascites-derived exosomal CD133: a potential prognostic biomarker in patients with advanced pancreatic cancer. Med Mol Morphol 2019;52:198-208.
- 13. Madhavan B, Yue S, Galli U, et al. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers

for pancreatic cancer diagnosis increases sensitivity and specificity. Int J Cancer 2015;136:2616-27.

- Lux A, Kahlert C, Grützmann R, et al. c-Met and PD-L1 on Circulating Exosomes as Diagnostic and Prognostic Markers for Pancreatic Cancer. Int J Mol Sci 2019;20:3305.
- 15. Kawamura S, Iinuma H, Wada K, et al. Exosomeencapsulated microRNA-4525, microRNA-451a and microRNA-21 in portal vein blood is a high-sensitive liquid biomarker for the selection of high-risk pancreatic ductal adenocarcinoma patients. J Hepatobiliary Pancreat Sci 2019;26:63-72.
- 16. Han Y, Drobisch P, Krüger A, et al. Plasma extracellular vesicle messenger RNA profiling identifies prognostic EV signature for non-invasive risk stratification for survival prediction of patients with pancreatic ductal adenocarcinoma. J Hematol Oncol 2023;16:7.
- 17. Yoshioka Y, Shimomura M, Saito K, et al. Circulating cancer-associated extracellular vesicles as early detection and recurrence biomarkers for pancreatic cancer. Cancer Sci 2022;113:3498-509.
- Machida T, Tomofuji T, Maruyama T, et al. miR 1246 and miR 4644 in salivary exosome as potential biomarkers for pancreatobiliary tract cancer. Oncol Rep 2016;36:2375-81.
- Xu X, Bhandari K, Xu C, et al. miR-18a and miR-106a Signatures in Plasma Small EVs Are Promising Biomarkers for Early Detection of Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023;24:7215.
- Morimura R, Komatsu S, Ichikawa D, et al. Novel diagnostic value of circulating miR-18a in plasma of patients with pancreatic cancer. Br J Cancer 2011;105:1733-40.
- Que R, Ding G, Chen J, et al. Analysis of serum exosomal microRNAs and clinicopathologic features of patients with pancreatic adenocarcinoma. World J Surg Oncol 2013;11:219.
- Lai X, Wang M, McElyea SD, et al. A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett 2017;393:86-93.
- 23. Di Pace AL, Pelosi A, Fiore PF, et al. MicroRNA analysis of Natural Killer cell-derived exosomes: the microRNA let-7b-5p is enriched in exosomes and participates in their anti-tumor effects against pancreatic cancer cells. Oncoimmunology 2023;12:2221081.
- 24. Goto T, Fujiya M, Konishi H, et al. An elevated expression of serum exosomal microRNA-191, -21, -451a of pancreatic neoplasm is considered to be efficient diagnostic

marker. BMC Cancer 2018;18:116.

- 25. Pu X, Ding G, Wu M, et al. Elevated expression of exosomal microRNA-21 as a potential biomarker for the early diagnosis of pancreatic cancer using a tethered cationic lipoplex nanoparticle biochip. Oncol Lett 2020;19:2062-70.
- 26. Takahasi K, Iinuma H, Wada K, et al. Usefulness of exosome-encapsulated microRNA-451a as a minimally invasive biomarker for prediction of recurrence and prognosis in pancreatic ductal adenocarcinoma. J Hepatobiliary Pancreat Sci 2018;25:155-61.
- 27. Bartsch DK, Gercke N, Strauch K, et al. The Combination of MiRNA-196b, LCN2, and TIMP1 is a Potential Set of Circulating Biomarkers for Screening Individuals at Risk for Familial Pancreatic Cancer. J Clin Med 2018;7:295.
- Ali S, Dubaybo H, Brand RE, et al. Differential Expression of MicroRNAs in Tissues and Plasma Co-exists as a Biomarker for Pancreatic Cancer. J Cancer Sci Ther 2015;7:336-46.
- Yoshizawa N, Sugimoto K, Tameda M, et al. miR-3940-5p/miR-8069 ratio in urine exosomes is a novel diagnostic biomarker for pancreatic ductal adenocarcinoma. Oncol Lett 2020;19:2677-84.
- Zou X, Wei J, Huang Z, et al. Identification of a sixmiRNA panel in serum benefiting pancreatic cancer diagnosis. Cancer Med 2019;8:2810-22.
- Li Q, Geng S, Yuan H, et al. Circular RNA expression profiles in extracellular vesicles from the plasma of patients with pancreatic ductal adenocarcinoma. FEBS Open Bio 2019;9:2052-62.
- 32. Li Z, Yanfang W, Li J, et al. Tumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancer. Cancer Lett 2018;432:237-50.
- 33. Li J, Li Z, Jiang P, et al. Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. J Exp Clin Cancer Res 2018;37:177.
- 34. Ye Z, Zhu Z, Xie J, et al. Hsa_circ_0000069 Knockdown Inhibits Tumorigenesis and Exosomes with Downregulated hsa_circ_0000069 Suppress Malignant Transformation via Inhibition of STIL in Pancreatic Cancer. Int J Nanomedicine 2020;15:9859-73.
- 35. Yang Z, LaRiviere MJ, Ko J, et al. A Multianalyte Panel Consisting of Extracellular Vesicle miRNAs and mRNAs, cfDNA, and CA19-9 Shows Utility for Diagnosis and

Staging of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2020;26:3248-58.

- 36. Yu S, Li Y, Liao Z, et al. Plasma extracellular vesicle long RNA profiling identifies a diagnostic signature for the detection of pancreatic ductal adenocarcinoma. Gut 2020;69:540-50.
- Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 2015;17:816-26.
- San Lucas FA, Allenson K, Bernard V, et al. Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes. Ann Oncol 2016;27:635-41.
- 39. Yang S, Che SP, Kurywchak P, et al. Detection of mutant KRAS and TP53 DNA in circulating exosomes from healthy individuals and patients with pancreatic cancer. Cancer Biol Ther 2017;18:158-65.
- Bernard V, Kim DU, San Lucas FA, et al. Circulating Nucleic Acids Are Associated With Outcomes of Patients With Pancreatic Cancer. Gastroenterology 2019;156:108-118.e4.
- Allenson K, Castillo J, San Lucas FA, et al. High prevalence of mutant KRAS in circulating exosomederived DNA from early-stage pancreatic cancer patients. Ann Oncol 2017;28:741-7.
- 42. Xu L, Faruqu FN, Lim YM, et al. Exosome-mediated RNAi of PAK4 prolongs survival of pancreatic cancer mouse model after loco-regional treatment. Biomaterials 2021;264:120369.
- Li YJ, Wu JY, Wang JM, et al. Gemcitabine loaded autologous exosomes for effective and safe chemotherapy of pancreatic cancer. Acta Biomater 2020;101:519-30.
- Mendt M, Kamerkar S, Sugimoto H, et al. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight 2018;3:e99263.
- Kamerkar S, LeBleu VS, Sugimoto H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 2017;546:498-503.
- 46. Ding Y, Cao F, Sun H, et al. Exosomes derived from human umbilical cord mesenchymal stromal cells deliver exogenous miR-145-5p to inhibit pancreatic ductal adenocarcinoma progression. Cancer Lett 2019;442:351-61.
- 47. Surana R, LeBleu VS, Lee JJ, et al. Phase I study of mesenchymal stem cell (MSC)-derived exosomes with KRASG12D siRNA in patients with metastatic pancreatic cancer harboring a KRASG12D mutation. J Clin Oncol 2022;40:TPS633.