

**Figure S1** Kaplan-Meier analysis and expression of partial hub genes in LUAD. Three genes (CST1, MMP11, SPINK1) related with LUAD but without impact on survival. (B) Expression of CST1, MMP11, SPINK1 in LUAD. \*, 0.01<P<0.05. LUAD, lung adenocarcinoma.



**Figure S2** Expression levels of various cancers of other six genes in TCGA database. (A) AGER. (B) COL11A1. (C) CYP24A1. (D) KRT6A. (E) PCP4. (F) SLC6A4. TCGA, The Cancer Genome Atlas.



**Figure S3** The correlation between GNGT1 expression and clinical pathological features and standard biomarkers. (A) Nomographic chart of GNGT1 and clinical pathological features in TCGA. (B) Risk factor map of different GNGT1 gene expression in LUAD patients in the TCGA database. (C) The relationship of GNGT1 and standard biomarkers. (D) Analysis data sheet of GNGT1 IHC grade and clinical pathological features. TCGA, The Cancer Genome Atlas; IHC, immunohistochemistry.



**Figure S4** Genetic alteration and mutation analyses in LUAD. (A-E) Gene alterations were identified through OncoVar. (F,G) Mutated bases in LUAD were visualized by OncoVar. (H) Ti and Tv were identified in LUAD. (I) Gene alterations burden of ten hubgenes were identified through cBioportal in LUAD. Ti, transitions; Tv, transversions; LUAD, lung adenocarcinoma.



**Figure S5** Gene alteration analysis of GNGT1. (A) The genetic alteration status of GNGT1 detected in various type of cancer. (B) The mRNA expression of GNGT1 is positive correlation with mutation count. (C) The relationship between putative copy-number alterations and mRNA expression of GNGT1.



**Figure S6** Methylation levels analysis of GNGT1 in LUAD. (A) The methylation sites in GNGT1 promoters were evaluated by MEXPRESS. (B,C) The relationship between GNGT1 expression and methylation in (B) ATP2A1 (cg00000292) and (C) MEOX2 (cg00003994) sites. (D) GNGT1 promoter methylation level is decreased in LUAD compare with normal tissues. LUAD, lung adenocarcinoma.



**Figure S7** Part of gene set enrichment analysis of GNGT1 high group versus low group in LUAD. (A) Up-regulated gene enrichment in part of the pathway. (B) Down-regulated gene enrichment in part of the pathway. LUAD, lung adenocarcinoma.



**Figure S8** RT-qPCR validation of DEGs level in lung tissues of wild type and GNGT1<sup>fl/+</sup> mouse models. (A) DEGs related to structural integrity of epithelial cells. (B) Extracellular matrix organization. (C) Cell-Cell communication. (D) Transcriptional regulation and differentiation of pluripotent stem cells. (E) Regulation of autophagy. RT-qPCR, real time quantitative polymerase chain reaction; DEGs, differentially expressed genes.



## A Transcriptional regulation and posttranscriptional modification

**Figure S9** RT-qPCR validation of DEGs level in lung tissues of wild type and GNGT1<sup>fl/+</sup> mouse models. (A) DEGs related to transcriptional regulation and posttranscriptional modification. (B) Immune regulation. (C) Other top DEGs mRNA expression. RT-qPCR, real time quantitative polymerase chain reaction; DEGs, differentially expressed genes.



**Figure S10** Immune infiltration analysis in LUAD and the association with GNGT1 expression. (A,B) The correlation between GNGT1 expression and different immune cell types by TIMER database in LUAD (A) and LUSC (B) by TIMER. (C,D) Immune cell-related survival analysis by TIMER in LUAD (C) and LUSC (D). (E) The correlation between GNGT1 expression and different immune cell types by R software. Th, T helper; aDC, activated dendritic cells; Tgd, T gamma delta cells; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.



**Figure S11** TMB and MSI analysis in pan-cancer and the association with GNGT1 expression. (A) The correlation between GNGT1 expression and TMB. (B) The correlation between GNGT1 expression and MSI. TMB, tumor mutation burden; MSI, microsatellite instability.

| Table S1 The baseline characteristics and GNGT1 IHC expression score of enrolled patien | ts |
|-----------------------------------------------------------------------------------------|----|
|-----------------------------------------------------------------------------------------|----|

| IHC of GNGT1 | T stage | Location                              | Age (years) | Gender | Final patient stage   |
|--------------|---------|---------------------------------------|-------------|--------|-----------------------|
| Low          | T1      | Upper lobe of right lung              | 60          | Male   | pT1aN0M0 IA stage     |
| Low          | T1      | Upper lobe of right lung              | 60          | Female | pT1bN0M0 IA2 stage    |
| Low          | T1      | Upper lobe of right lung              | 70          | Male   | pT1aN0M0 IA2 stage    |
| Low          | T1      | Upper lobe of right lung              | 61          | Male   | pT1aN0M0 IA stage     |
| Low          | T1      | Upper lobe of right lung              | 49          | Female | pT1bN0M0 IA2 stage    |
| Low          | T1      | Upper lobe of right lung              | 63          | Male   | pT1bN0M0 IA2 stage    |
| High         | T1      | Upper lobe of right lung              | 57          | Female | pT1bN0M0 IA2 stage    |
| Low          | T1      | Upper lobe of right lung              | 52          | Male   | pT1aN0M0 IA stage     |
| Low          | T1      | Upper lobe of right lung              | 46          | Female | pT1aN0M0 IA stage     |
| Low          | T1      | Middle lobe of right lung             | 61          | Female | T1aN0M0 IA stage      |
| Low          | T1      | Upper lobe of right lung              | 57          | Male   | pT1bN0M0 IA2 stage    |
| High         | T1      | Inferior lobe of right lung           | 57          | Male   | pT1bN0M0 IA2 stage    |
| High         | T1      | Upper lobe of right lung              | 43          | Female | pT1aN0M0 IA stage     |
| low          | T1      | Upper lobe of left lung               | 62          | Female | pT1bN0M0 IA2 stage    |
| Low          | T1      | Inferior lobe of left lung            | 54          | Female | pT1bN0M0 IA2 stage    |
| Low          | т1      | Linner lobe of right lung             | 49          | Female | pT1bN0M0 IA2 stage    |
| Low          | т2      | Inferior lobe of right lung           | 63          | Female | pT2bN2M0 IIIA stage   |
| High         | T2      | Linner lobe of right lung             | 69          | Female |                       |
| High         | T2      |                                       | 82          | Fomalo | nT2hN1M0 IIR stage    |
| High         | 12      |                                       | 62          | Female |                       |
|              | T2      |                                       | 61          | Fomalo | pT2NOM0 IB stage      |
| Low          | T2      |                                       | 76          | Malo   |                       |
|              | 12      | Upper lobe of left lung               | 78          | Fomolo | pT2aN0M0 IB stage     |
| Low          | 12      | Opper lobe of left lung               | 59          | Female |                       |
| LOW          | 12      | Opper lobe of left lung               | 59          | remaie |                       |
| High         | 12      | Opper lobe of left lung               | 70          | Male   |                       |
| High         | 12      | Upper lobe of right lung              | 62          |        |                       |
| High         | 12      | Interior lobe of right lung           | 54          | Male   | p I 2aNUMU IB stage   |
| High         | 12      | Interior lobe of left lung            | 88          | Male   | p12aN0M0 IB stage     |
| Low          | 12      | Upper lobe of right lung              | 79          | Male   | p12bN1MU IIB stage    |
| High         | 12      | Middle lobe of right lung             | 51          | Female | p12aN2MU IIIA stage   |
| High         | 12      | Upper lobe of left lung               | 72          | Female | pT2aNUMU IB stage     |
| High         | 12      | Upper lobe of left lung               | 67          | Female | p12bN2M0 IIIA stage   |
| High         | 12      | Interior lobe of left lung            | 69          |        |                       |
| High         | 12      | Interior lobe of left lung            |             | Female |                       |
| High         | 12      |                                       | 51          | Female | p I 2aN2MU IIIA stage |
| Low          | 13      | Interior lobe of right lung           | 65          | Female |                       |
| Low          | 13      | Upper lobe of right lung              | 55          | Male   | p13N0M1b IV stage     |
| Low          | ТЗ      | Inferior lobe of right lung           | 50          | Female | pT3N2M0 IIIB stage    |
| Low          | ТЗ      | Upper lobe of right lung              | 67          | Male   | pT3N0M0 IIB stage     |
| Low          | Т3      | Inferior lobe of left lung            | 55          | Female | pT3N1M0 IIIA stage    |
| High         | Т3      | Inferior lobe of right lung           | 68          | Female | pT3N0M0 IIB stage     |
| High         | Т3      | Upper lobe of left lung               | 47          | Male   | pT3N2M0 IIIB stage    |
| High         | Т3      | Inferior lobe of right lung           | 64          | Female | pT3N2M0 IIIB stage    |
| High         | Т3      | Inferior lobe of right lung           | 69          | Female | pT3N0M0 IIB stage     |
| High         | Т3      | Inferior lobe of right lung           | 52          | Female | pT3N1M0 IIIA stage    |
| High         | Т3      | Inferior lobe of left lung            | 66          | Male   | pT3N0M0 IIB stage     |
| Low          | Т3      | Upper lobe of right lung              | 64          | Male   | pT3N0M0 IIB stage     |
| Low          | Т3      | Inferior lobe of right lung           | 58          | Female | pT3NxM1a IVA stage    |
| Low          | Т3      | Upper lobe of right lung              | 68          | Male   | pT3N0M0 IIB stage     |
| Low          | ТЗ      | Upper lobe of right lung              | 68          | Male   | pT3N0M0 IIB stage     |
| Low          | ТЗ      | Upper lobe of left lung               | 64          | Male   | pT3N0M0 IIB stage     |
| High         | ТЗ      | Inferior lobe of left lung            | 58          | Female | pT3N1M0 IIIA stage    |
| High         | ТЗ      | Inferior lobe of right lung           | 66          | Female | pT3N1M0 IIIA stage    |
| Low          | Τ4      | Upper lobe of right lung              | 72          | Male   | pT4N2M0 IIIB stage    |
| High         | Τ4      | Upper lobe of right lung              | 67          | Male   | pT4N1M0 IIIA stage    |
| Low          | Τ4      | Upper and inferior lobe of right lung | 69          | Male   | pT4NxM0 IIIA stage    |
| High         | Τ4      | Inferior lobe of left lung            | 48          | Male   | pT4N2M0 IIIB stage    |
| High         | T4      | Inferior lobe of right lung           | 40          | Female | pT4N1M0 IIIA stage    |

IHC, immunohistochemistry.

## Table S2 The primer sequence of RT-qPCR $% \left( {{{\rm{A}}} \right)_{\rm{T}}} = {{\rm{A}}} \right)$

| Gene        | Primer  | Sequence (5'-3')           |
|-------------|---------|----------------------------|
| hGAPDH      | Forward | GACAGTCAGCCGCATCTTCT;      |
|             | Reverse | GCGCCCAATACGACCAAATC;      |
| hGNGT1      | Forward | GTTTCCAAATGTTGTGAAGAAGTA;  |
|             | Reverse | GAAGGGATTTTTGTCCTCTG;      |
| mGAPDH      | Forward | GAAGGTCGGTGTGAACGGAT:      |
|             | Reverse | ACTGTGCCGTTGAATTTGCC       |
| mCNGT1      | Forward |                            |
| lianari     | Poverse |                            |
|             | Forward |                            |
| MFGB        | Porward |                            |
|             | Reverse |                            |
| mALB        | Forward |                            |
|             | Reverse | GGCCTTTCAAATGGTGGCAG;      |
| mCTAG2      | Forward | TGAAGGCAGCTCGCATCTTA;      |
|             | Reverse | ACAGGGACCCTTGAGTTGAG;      |
| mFGF4       | Forward | CCGGTATGTTCATGGCCCTC;      |
|             | Reverse | ACCTTCATGGTAGGCGACAC;      |
| mAFP        | Forward | TGCGTGACGGAGAAGAATGT;      |
|             | Reverse | ACACCCATCGCCAGAGTTTT;      |
| mHP         | Forward | ATCGCTGCCGACAGTTCTAC;      |
|             | Reverse | ATCTTGGCCTGCCTCACATT;      |
| mCDH2       | Forward | TCATTGTAGCCAACCTAACTGTCAC; |
|             | Reverse | GTCTCCACCACTGATTCTGTATGC;  |
| mE-cadherin | Forward | TCTGATCCTGCTGCTCCTACTG;    |
|             | Reverse | CTTCTTCTCCACCTCCTTCTTCATC; |
| mATG7       | Forward | CGGTGGCTTCCTACTGTTATTGC;   |
|             | Reverse | CGGCTCCCTGCTGCTTGG:        |
| mATG5       | Forward | AAGCAGCTCTGGATGGGACTG:     |
|             | Reverse | CCGCTCCGTCGTGGTCTG:        |
| mBecn1      | Forward | CAGTACCAGCGGGAGTATAGTGAG   |
|             | Reverse | TGGAAGGTGGCATTGAAGACATTG   |
| mADAMTS20   | Forward | GGGTCCTGGGAAGTTCGTT        |
|             | Beverse |                            |
| mC-MYC      | Forward |                            |
|             | Beverse |                            |
| mKI F4      | Forward |                            |
|             | Reverse |                            |
| mCD44       | Forward |                            |
| 110044      | Beverse |                            |
| mCD122      | Forward |                            |
| 1100133     | Reverse |                            |
| mblanag     | Forward |                            |
| minanog     | Porward |                            |
| 0071        | Reverse |                            |
| MOC14       | Porward |                            |
| 0.01/0      | Reverse |                            |
| mSOX2       | Forward |                            |
| DADIA       | Reverse |                            |
| mPADI4      | Forward |                            |
| 1150        | Reverse |                            |
| MMPO        | Forward |                            |
| mMPO R      | Reverse | GGCAGACTCCCAACCTCTA;       |
| mElane F    | Forward | ATTCCATTATCCGAAGCCATA;     |
| mElane R    | Reverse | CAGACAGGTCCTAGTTGGTCC;     |
| mHMGB1      | Forward | AGGCTGACAAGGCTCGTTATGAAAG; |
|             | Reverse | GGGCGGTACTCAGAACAAGACAAG;  |
| mCXCL15     | Forward | TCCGTCCCTGTGACACTCAAGAG;   |
|             | Reverse | GCCAACAGTAGCCTTCACCCATG;   |
| mIL-6       | Forward | TCTTGGGACTGATGCTGGTGAC;    |
|             | Reverse | TCTGTTGGGAGTGGTATCCTCTGTG; |
| mMMP9       | Forward | ACGGCAACGGAGAAGGCAAAC;     |
|             | Reverse | GTCCACTCGGGTAGGGCAGAAG;    |
| mCXCL4      | Forward | CTGGTCCCGAAGAAAGCGATGG;    |
|             | Reverse | AGGCTGGTGATGTGCTTAAGATGG;  |
| mKRAS       | Forward | TCTGAAGATGTGCCTATGGTCCTG;  |
|             | Reverse | CCCGTAACTCCTTGCTAACTCCTG;  |
| mKEAP1      | Forward | GCTCAACCGCTTGCTGTATGC;     |
|             | Reverse | CATCCGCCACTCATTCCTCTG;     |
| mNFE2L2     | Forward | GTTGCCACCGCCAGGACTAC;      |
|             | Reverse | AAACTTGTACCGCCTCGTCTGG;    |
| mSTK11      | Forward | ACACCTTCATCCACCGCATCG;     |
|             | Reverse | GTCCAGCACCTCCTTCACCTTG;    |
| mB2M        | Forward | GCTCGGTGACCCTGGTCTTTC;     |
|             | Reverse | AGTATGTTCGGCTTCCCATTCTCC;  |
| mPTEN       | Forward | TGAAGACCATAACCCACCACAGC;   |
|             | Reverse | TCATTACACCAGTCCGTCCCTTTC;  |

RT-qPCR, real time quantitative polymerase chain reaction.

| Gene<br>symbol | Description                                                      | Biological process (GO)                                                                                                                                                                              | Protein function (protein atlas)                                                                                                                                                                                                                                                                                                                                                                                                                         | Canonical<br>pathways                                                                                | Hallmark gene sets                                                                                       |
|----------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| GNGT1          | G-protein<br>subunit<br>gamma<br>transducin 1                    | GO:0010659 cardiac muscle cell<br>apoptotic process; GO:0010658<br>striated muscle cell apoptotic<br>process; GO:0010657 muscle<br>cell apoptotic process                                            | RAS pathway related proteins;<br>Predicted intracellular proteins                                                                                                                                                                                                                                                                                                                                                                                        | (M204) PID<br>RHODOPSIN<br>PATHWAY                                                                   | (M5923) PI3K; AKT;<br>mTOR SIGNALING                                                                     |
| KRT6A          | keratin 6A                                                       | GO:2000536 negative regulation<br>of entry of bacterium into host<br>cell; GO:2000535 regulation<br>of entry of bacterium into host<br>cell; GO:0052372 modulation by<br>symbiont of entry into host | Human disease related genes;<br>Congenital malformations:<br>Congenital malformations of skin;<br>Predicted intracellular proteins;<br>Disease related genes                                                                                                                                                                                                                                                                                             |                                                                                                      |                                                                                                          |
| CYP24A         | 1 cytochrome<br>P450 family<br>24 subfamily<br>A member 1        | GO:0070561 vitamin D receptor<br>signaling pathway; GO:0042369<br>vitaminD catabolic process;<br>GO:0042363 fat-soluble vitamin<br>catabolic process                                                 | Disease related genes; Enzymes;<br>Potential drug targets; Predicted<br>intracellular proteins; ENZYME<br>proteins: Oxidoreductases; Human<br>disease related genes: Congenital<br>disorders of metabolism; Other<br>congenital disorders of metabolism                                                                                                                                                                                                  |                                                                                                      |                                                                                                          |
| COL11A         | 1 collagen type<br>XI alpha 1<br>chain                           | GO:0035989 tendon<br>development; GO:0050910<br>detection of mechanical<br>stimulus involved in sensory<br>perception of sound                                                                       | Disease related genes;<br>Human disease related genes:<br>Congenital malformations;<br>Other congenital malformations;<br>Human disease related genes:<br>Congenital malformations:<br>Congenital malformations of the<br>musculoskeletal system; Cancer-<br>related genes: Candidate cancer<br>biomarkers; Predicted secreted<br>proteins; Predicted intracellular<br>proteins; Human disease related<br>genes: Nervous system diseases;<br>Eye disease | (M3005) NABA<br>COLLAGENS;<br>(M198) PID<br>SYNDECAN 1<br>PATHWAY; (M18)<br>PID INTEGRIN1<br>PATHWAY | (M5942)<br>HALLMARK<br>UV RESPONSE<br>DN; (M5930)<br>HALLMARK<br>EPITHELIAL<br>MESENCHYMAL<br>TRANSITION |
| PCP4           | Purkinje cell<br>protein 4                                       | GO:0099004 calmodulin<br>dependent kinase signaling<br>pathway; GO:0045666<br>positive regulation of neuron<br>differentiation; GO:0045664<br>regulation of neuron<br>differentiation                | Predicted intracellular proteins                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      | (M5907)<br>ESTROGEN<br>RESPONSE LATE;<br>(M5953) KRAS<br>SIGNALING UP                                    |
| AGER           | advanced<br>glycosylation<br>end-product<br>specific<br>receptor | GO:1904470 regulation<br>of endothelin production;<br>GO:1904472 positive regulation<br>of endothelin production;<br>GO:1900453 negative<br>regulation of long-term synaptic<br>depression           | Transporters: Accessory Factors<br>Involved in Transport; Predicted<br>secreted proteins; Cancer-<br>related genes: Candidate cancer<br>biomarkers                                                                                                                                                                                                                                                                                                       | (M159) PID AMB2<br>NEUTROPHILS<br>PATHWAY                                                            | (M5947)<br>HALLMARK IL2<br>STAT5 SIGNALING                                                               |
| SLC6A4         | solute carrier<br>family6<br>member 4                            | GO:0014064 positive regulation<br>of serotonin secretion;<br>GO:0090067 regulation of<br>thalamus size; GO:0032227<br>negative regulation of synaptic<br>transmission. dopamineraic                  | FDA approved drug targets: Small<br>molecule drugs; Human disease<br>related genes: Other diseases:<br>Mental and behavioural disorders;<br>Transporters: Electrochemical<br>potential-driven transporters                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                          |

## Table S3 The function of seven hub genes by online database Metascape

RAS, rat sarcoma; FDA, Food and Drug Administration.

## $\textbf{Table S4} \ \textbf{Multivariate Cox regression analysis of GNGT1 in TCGA LUAD cohort}$

| Factor | Coef  | Exp(coef) | Se(coef) | z     | Pr(> z )  | Lower 0.95 | Upper 0.95 |  |
|--------|-------|-----------|----------|-------|-----------|------------|------------|--|
| GNGT1  | 0.387 | 1.47      | 0.16     | 2.33  | 0.02*     | 1.06       | 2.02       |  |
| Т      | 0.15  | 1.16      | 0.10     | 1.48  | 0.14      | 0.95       | 1.42       |  |
| Ν      | 0.08  | 1.09      | 0.01     | 0.85  | 0.39      | 0.90       | 1.31       |  |
| Μ      | -0.07 | 0.93      | 0.01     | -0.74 | 0.46      | 0.76       | 1.13       |  |
| Stage  | 0.41  | 1.50      | 0.01     | 4.09  | <0.001*** | 1.24       | 1.83       |  |

| Radiation therapy | -0.44 | 0.65 | 0.21 | -2.108 | 0.04* | 0.43 | 0.97 |
|-------------------|-------|------|------|--------|-------|------|------|
|                   |       |      |      |        |       |      |      |

\*, P<0.05; \*\*\*, P<0.01. TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma.

Table S5 Univariable Cox regression analysis of GNGT1 in TCGA LUAD cohort

| Factor            | Coef  | Exp(coef) | Se(coef) | z     | Pr(> z )  | Lower 0.95 | Upper 0.95 |
|-------------------|-------|-----------|----------|-------|-----------|------------|------------|
| GNGT1             | 0.33  | 1.38      | 0.15     | 2.17  | 0.03*     | 1.03       | 1.87       |
| Т                 | 0.43  | 1.53      | 0.09     | 4.83  | <0.001*** | 1.29       | 1.83       |
| Ν                 | 0.35  | 1.42      | 0.07     | 5.21  | <0.001*** | 1.24       | 1.61       |
| Μ                 | -0.02 | 0.98      | 0.09     | -0.27 | 0.79      | 0.82       | 1.16       |
| Stage             | 0.53  | 1.70      | 0.07     | 7.38  | <0.001*** | 1.47       | 1.95       |
| Radiation therapy | -0.73 | 0.48      | 0.19     | -3.77 | <0.001*** | 0.33       | 0.70       |

\*, P<0.05; \*\*\*, P<0.01. TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma.