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Supplementary

Appendix 1 

Univariate and multivariate analysis

Variables
Univariate analysis Multivariate analysis

β S.E Z P OR (95% CI) β S.E Z P OR (95% CI)

Spiculation

0 1.00 (Reference) 1.00 (Reference)

1 2.00 0.28 7.04 <0.001 7.36 (4.22–12.84) 1.08 0.36 3.05 0.002 2.96 (1.47–5.94)

Lobulation

0 1.00 (Reference) 1.00 (Reference)

1 0.52 0.29 1.77 0.076 1.68 (0.95–2.98) −0.76 0.42 −1.82 0.068 0.47 (0.21–1.06)

Vacuole sign

0 1.00 (Reference) 1.00 (Reference)

1 0.72 0.27 2.69 0.007 2.06 (1.22–3.50) 0.75 0.35 2.16 0.031 2.13 (1.07–4.21)

Pleural Indentation

0 1.00 (Reference) 1.00 (Reference)

1 1.14 0.22 5.24 <0.001 3.11 (2.04–4.76) −0.06 0.30 −0.20 0.840 0.94 (0.52–1.69)

Pericystic emphysema

0 1.00 (Reference) 1.00 (Reference)

1 1.04 0.50 2.09 0.037 2.82 (1.07–7.44) 0.01 0.83 0.01 0.993 1.01 (0.20–5.11)

Tumor-lung interface

0 1.00 (Reference) 1.00 (Reference)

1 −0.65 0.45 −1.46 0.143 0.52 (0.22–1.25) −0.60 0.55 −1.09 0.275 0.55 (0.18–1.62)

Gender

0 1.00 (Reference) 1.00 (Reference)

1 0.76 0.21 3.57 <0.001 2.14 (1.41–3.24) 0.53 0.28 1.90 0.058 1.70 (0.98–2.96)

Density

1 1.00 (Reference) 1.00 (Reference)

2 −2.14 0.29 −7.45 <0.001 0.12 (0.07–0.21) −1.81 0.32 −5.58 <0.001 0.16 (0.09–0.31)

3 −3.73 0.42 −8.89 <0.001 0.02 (0.01–0.05) −2.98 0.51 −5.84 <0.001 0.05 (0.02–0.14)

Air bronchogram

0 1.00 (Reference) 1.00 (Reference)

1 1.01 0.21 4.72 <0.001 2.76 (1.81–4.20) 0.47 0.30 1.59 0.112 1.60 (0.90–2.86)

Age 0.06 0.01 5.42 <0.001 1.06 (1.04–1.08) 0.03 0.01 2.29 0.022 1.03 (1.01–1.06)

Maximum diameter 0.09 0.01 7.06 <0.001 1.10 (1.07–1.13) 0.03 0.02 1.91 0.056 1.03 (1.00–1.06)

OR, odds ratio; CI, confidence interval.
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Appendix 2 

3D DCNN model

Four 3D DCNN architectures were employed in the DCNN models to assess the utilization and integration of various 
data modalities. These architectures encompassed 3D ResNet18 (Figure S1), 3D ResNet50 (Figure S2), 3D DenseNet121  
(Figure S3), and 3D DenseNet201 (Figure S4). During the optimization of each model, a batch size of 16 was maintained for 
training purposes. The models’ parameters were iteratively updated using the Adam optimizer with exponential decay. The 
training process was terminated after 150 epochs. Additionally, the dropout layer parameter within the network was 0.5.

Figure S1 Model structure of 3D ResNet18.

Figure S2 Model structure of 3D ResNet50.

Figure S3 Model structure of 3D DenseNet121.

Figure S4 Model structure of 3D DenseNet201.

2.5D DCNN Model

Training 3D networks with limited medical imaging data is prone to overfitting, while training 2D networks lacks innovation 
and may lose their three-dimensional information. Here, the 2.5D network specifically refers to a way of representing the 
three-dimensional information of the dataset in the form of three channels, training a 2D network, and avoiding overfitting to 
some extent (31).
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The model adopts the 2D DenseNet121 network (Figure S5). During the optimization process, this study trains with a 
batch size of 16, and uses the Adam optimizer to update the model parameters by reducing the learning rate by 0.8 times 
when the loss function does not decrease for 5 consecutive epochs. The training was stopped after 150 epochs.

Figure S5 Model structure of 2.5D DenseNet.

Integrating Clinical Features into Deep Learning Models

The research aims to incorporate clinical features into deep learning models to achieve more accurate classification results. 
However, integrating clinical features into the 3DResNet basicblock is complex and requires significant effort. Therefore, the 
experiment chooses to integrate clinical features in the feature space. Specifically, there are two methods: concatenation and 
bias (32).

In the concatenation method (Figure S6), clinical features are concatenated with the feature vectors of deep learning after 
the dropout layer. The concatenated features are then input into the fully connected layer for classification. Clinical feature 
data values include variables (such as age, maximum diameter, etc.) and Boolean values (gender, cavitation sign, etc.), with 
significant differences in distribution. Directly inputting these features into the network without passing through the batch 
normalization (bn) layer can easily affect the classification results, leading to predictions that are all 0 or all 1.

Another method is to transform the clinical features into the same size as the deep learning feature vector through a fully 
connected layer, and then add the clinical features to the deep learning features in the form of bias by addition, and finally 
output the model classification results through subsequent dropout layers, fully connected layers, etc. (Figure S7).

Figure S6 Concatenation method.

Figure S7 Bias method.
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Comparison of deep learning and machine learning in predicting STAS

The ROC curves of the models besides those with highest performance for both deep learning and machine learning are 
presented in Figure S8.

Figure S8 Performances for spread through air spaces (STAS) prediction. The receiver operating characteristic (ROC) curves of high-
performance machine learning models in internal test set (A), external test set (B), and high-performance deep learning models in internal 
test set (C), and external test set (D). AUC indicates area under the curve.
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Comparison of AI performance with that of human readers

To further evaluate the performance of our algorithm, we conducted a comprehensive comparison with human readers. 
Two radiologists with 6 years of experience were invited to evaluate 80 chest CT scan randomly selected from test set, and 
we compared the results with the gold standard. Figure S9 illustrates the confusion matrix, Cohen’s kappa and accuracy 
analysis for the two readers, 3R18DA (Model 1), 3R18DODA4CC (Model 2), 3R18DODA4CB (Model 3) in relation to the 
gold standard. High agreement values of κ=0.4844 and κ=0.4196 were found in Model 1 and Reader 2 respectively, which 
demonstrates a moderate agreement between our model and gold standard (Figure S9B). However, Model 2, Model 3 and 
Reader 1 showed only weak agreement values with the gold standard with κ=0.3833, 0.3957 and 0.4195, respectively. The 
accuracy analysis showed similar trends as depicted in Figure S8C. The best model demonstrated substantial discriminatory 
accuracy of 0.7625 and Cohen’s kappa values of 0.4844, superior to both the two readers. The other two models also 
established comparable results to Reader 2 and superior results to Reader 1. The results indicate that AI-based algorithm has 
the potential to serve as a reliable tool for STAS diagnosis.

Figure S9 Confusion matrix of the human experts’ labels and Kappa visualization to compare the performance of human experts and our 
model. (A) Confusion matrix of the human experts’ labels, illustrating the distribution of the human labeling. (B) Visualization of the kappa 
to compare the performance of human experts and our model. (C) Visualization of the accuracy to compare the performance of human 
experts and our model.
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Abbreviations

All the abbreviations and counterparts of models are provided in Table S1.

Table S1 Abbreviations and counterparts of different models

Abbreviation Counterpart

1 LRC Logistic Regression + Radiomics + Clinical data

2 LR Logistic Regression + Radiomics

3 LC Logistic Regression + Clinical data

4 L4C Logistic Regression + Four Clinical data

5 RRC Random Forest + Radiomics + Clinical data

6 RR Random Forest + Radiomics

7 RC Random Forest + Clinical data

8 R4C Random Forest + Four Clinical data

9 SRC SVM + Radiomics + Clinical data

10 SR SVM + Radiomics

11 SC SVM + Clinical data

12 S4C SVM + Four Clinical data

13 2D121DA 2.5d densenet121 + Data augmentation

14 3D121DA 3D Densenet121 + Data augmentation

15 3D201DA 3D Densenet201 + Data augmentation

16 3R18DODA4CB 3D Resnet18 + dropout 0.5 + Data augmentation + Four Clinical data (bias)

17 3R18DODA4CC 3D Resnet18 + dropout 0.5 + Data augmentation + Four Clinical data (concatenate)

18 3R18DODA11CB 3D Resnet18 + dropout 0.5 + Data augmentation + 11 Clinical data (bias)

19 3R18DODA11CC 3D Resnet18 + dropout 0.5 + Data augmentation + 11 Clinical data (concatenate)

20 3R18DODA 3D Resnet18 + dropout 0.5 + Data augmentation

21 3R18 3D resnet18

22 3R18DA 3D Resnet18 + Data augmentation

23 3R50DODA 3D Resnet50 + dropout 0.5 + Data augmentation

24 3R50 3D resnet50

25 3R50DA 3D Resnet50 + Data augmentation
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