																fMRI resp	onses													
			BOLD (% sig	gnal change					M BOLD (%	signal char																	numbero	ofvoxels		
	VIS	UAL	AUD	ITORY	SENSOR	RIMOTOR	VI	UAL	AUD	ITORY	SENSOR	IMOTOR	VIS	JUAL	AUD	ITORY	SENSOR	IMOTOR	VI	ISUAL	AUD	ITORY	SENSOF	IMOTOR	VISU	IAL	AUDIT	TORY	SENSORI	MOTOR
Participants		106-04				- Internet		14(69.0		0486.0		100,001		(Juseph)		100-00		- Mildan		(aselia)		inie (M			000					
PA01		0.251	-0.211	-0.23	0.951	0.622		0.053	0.064	0.065	0.249	0.123		4.75	-3.306	-3.561	3.827	5.068		0.000004	0.00132	0.000467	0.000214	0.000002		76	56	46	57	37
PA02		-0.366	-0.309	-0.328	0.941			0.094	0.077	0.067	0.274			-3.894	-4.003	-4.933	3.433			0.000136	0.000088	0.000002	0.00085			54	100	198	26	
PA03		-0.345				-0.395		0.09				0.096		-3.854				-4.111		0.000159				0.000072		34				86
PA04	0.147	-0.214	-0.136				0.032	0.078	0.025				4.549	-2.766	-5.442				0.000009	0.006219	0.0000001				58	98	181			
PA05		0.161	-0.134			0.302		0.039	0.03			0.059		4.133	-4.432			5.162		0.000053	0.000015			0.000001		41	107			15
PA06	0.464	0.515			-0.32		0.147	0.149			0.122		3.164	3.45			-2.624		0.001807	0.000688			0.009933		62	59			114	
PA07	-0.384	-0.401	-0.202				0.119	0.136	0.029				-3.214	-2.944	-6.867				0.001579	0.003719	0.0000001				93	87	219			
PA08		0.327	-0.233	0.166				0.111	0.071	0.046				2.942	-3.286	3.629				0.00367	0.001208	0.000365				86	116	106		
PA09	0.176	0.155				0.244	0.063	0.053				0.034	2.788	2.903				7.068	0.005831	0.004121				0.0000001	81	42				204
PA10	-0.236			0.252		0.77	0.071			0.041		0.136	-3.313			6.154		5.658	0.001095			0.0000001		0.0000001	99			81		32
PA11	-0.131	0.171		0.176	0.883	1.127	0.026	0.029		0.032	0.114	0.185	-5.105	5.811		5.417	7.727	6.102	0.000001	0.0000001		0.0000001	0.0000001	0.0000001	123	496		92	306	68
PA12	0.135		0.22	0.159	1.459	2.385	0.038		0.058	0.029	0.174	0.329	3.554		3.816	5.567	8.403	7.24	0.000478		0.000182	0.0000001	0.0000001	0.0000001	22		41	71	71	97
PA13			-0.154	-0.161		1.436			0.044	0.028		0.249			-3.523	-5.745		5.754			0.000524	0.0000001		0.0000001			29	311		107
PA14	0.137		0.166	0.14	0.884	0.716	0.032		0.039	0.037	0.137	0.087	4.245		4.296	3.733	6.457	8.245	0.000034		0.000027	0.000245	0.0000001	0.0000001	14		26	13	357	426
PA15		-0.191	-0.237	0.193		0.207		0.034	0.052	0.04		0.053		-5.606	-4.558	4.855		3.887		0.0000001	0.000009	0.000002		0.000158		107	95	50		16
PA16	-0.176	0.131				0.649	0.04	0.034				0.104	-4.384	3.856				6.24	0.000019	0.000157				0.0000001	42	65				91
PA17			-0.381	-0.333	-0.867				0.124	0.102	0.201				-3.059	-3.269	-4.319				0.002506	0.001262	0.00003				53	109	70	
PA18	-0.14			-0.169		-0.499	0.029			0.027		0.092	-4.765			-6.212		-5.402	0.000004			0.0000001		0.0000001	43			59		23
CT01		-0.144	.096			0.586		0.023	0.02			0.178		-6.321	4.769			3.296		0.0000001	0.000003			0.001259		77	91			24

Figure S1 Comprehensive description of fMRI response patterns. Comprehensive description of the fMRI response patterns during visual, auditory, and sensorimotor stimulation (beta values, standard error, t values, P values, and number of voxels of the clusters) per participant and brain hemisphere. PA, perinatal asphyxia participants; CT, control participant; fMRI, functional magnetic resonance imaging; BOLD, blood-oxygen-level-dependent; SEM, standard error of the mean.

Table S1 fMRI BOLD responses by type of sedation in participants with PA

fMRI BOLD responses (% signal change) per	Sedatio	D			
stimulus and hemisphere	Midazolam (N=7)	Propofol (N=11)	P		
Visual left, mean ± SD	0.757±0.428	-0.0336±0.175	0.563		
Visual right, mean ± SD	-0.057±0.363	-0.119±0.189	0.303		
Auditory left, median (IQR)	-0.202 (-0.26 to 0.135)	–0.193 (–0.273 to 0.195)	1.0		
Auditory right, median (IQR)	–0.279 (-0.328 to –0.279)	0.159 (–0.165 to 0.184)	0.145		
Sensorimotor left, mean \pm SD	0.524±0.731	0.52±1.001	0.928		
Sensorimotor right, mean ± SD	0.176±0.52	0.782±0.821	0.266		

fMRI, functional magnetic resonance imaging; BOLD, blood-oxygen-level-dependent; PA, perinatal asphyxia; N, number; SD, standard deviation; IQR, interquartile range. Retrieved with permission from Pinto CR, Duarte JV, Marques C, Vicente IN, Paiva C, Eloi J, et al. The role of early functional neuroimaging in predicting neurodevelopmental outcomes in neonatal encephalopathy. Eur J Pediatr. 2023;182(3):1191-200. Copyright license at https://creativecommons.org/licenses/by/4.0/.