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Background: Neoadjuvant radiotherapy is a commonly used method for the current standard-of-care for 
most patients with rectal cancer, when the effects of radioresistance are limited. The phosphatidylinositol 
transfer protein, cytoplasmic 1 (PITPNC1), a lipid-metabolism-related gene, has previously been proved 
to manifest pro-cancer effects in multiple types of cancer. However, whether PITPNC1 plays a role for 
developing radioresistance in rectal cancer patients is still unknown. Therefore, this study aims to investigate 
the role of PITPNC1 in rectal cancer radioresistance.
Methods: Patient-derived tissue were used to detect the difference in the expression level of PITPNC1 
between radioresistant and radiosensitive patients. Bioinformatic analyses of high-throughput gene 
expression data were applied to uncover the correlations between PITPNC1 level and oxidative stress. Two 
rectal cancer cell lines, SW620, and HCT116, were selected in vitro to investigate the effect of PITPNC1 on 
radioresistance, reactive oxygen species (ROS) generation, apoptosis, and proliferation in rectal cancer.
Results: PITPNC1 is highly expressed in radioresistant patient-derived rectal cancer tissues compared 
to radiosensitive tissue; therefore, PITPNC1 inhibits the generation of ROS and improves the extent of 
radioresistance of rectal cancer cell lines and then inhibits apoptosis. Knocking down PITPNC1 facilitates 
the production of ROS while application of the ROS scavenger, N-acetyl-L-cysteine (NAC), could reverse 
this effect.
Conclusions: PITPNC1 fuels radioresistance of rectal cancer via the inhibition of ROS generation.
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Introduction

Colorectal cancer is the third most common cancer, and 
rectal cancer accounts for approximately 30% of the total 
cancer occurrences (1). Radiotherapy is an important 

method in neoadjuvant therapy for patients with rectal 
cancer, which improves the anus-preservation rate and 
lowers the risk of recurrence. Despite 22–30% of patients 
being able to achieve pathological complete remission 
after neoadjuvant radiotherapy, 30–50% of them are 
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unlikely to benefit significantly from it, and 5% may even 
suffer metastasis (2-6). The possibility of developing 
radioresistance hampers the effect of neoadjuvant 
radiotherapy and worsens clinical outcomes. Although there 
have already been many attempts to seek radiosensitivity 
biomarkers (7-12), less has been known about the exact 
mechanisms of the development of radioresistance in 
rectal cancer, which is vital to improve the therapeutic 
effect of rectal cancer further and to develop a reliable 
radiosensitivity evaluation method to optimize clinical 
decision-making.

It has been well proven that the main mechanisms of 
the therapeutic effects of radiotherapy to cancer is DNA 
double-strand break induced by reactive oxygen species 
(ROS). The source of more than 90% of total ROS 
generated is the oxidation respiratory chain located in the 
mitochondria (13). Previous studies have highlighted the 
importance of glycolysis-related metabolic reprogramming 
mechanisms of tumor cells in radioresistance development 
(14-17). However, lipid oxidative metabolism-related 
mechanisms were also recently demonstrated to play a 
negative regulatory role in this process (18,19). 

Phosphatidylinositol transfer protein, cytoplasmic 1 
(PITPNC1), is a member of the phosphatidylinositol 
transfer proteins (PITPs) family that participates in multiple 
cellular processes, including lipid metabolism (20-24). 
PITPNC1, specifically, is characterized to bind and transfer 
phosphatidic acid, and thus is a key member in the process 
of phosphatidic acid metabolism (25). Previous studies have 
demonstrated that PITPNC1 plays a pro-cancer role by 
promoting tumor angiogenesis, metastasis, and malignant 
secretion (26,27). Our recent work have also shown that 
PITPNC1 fuels omental metastasis of gastric cancer (28).  
Nevertheless, whether PITPNC1 participates in the 
development of radioresistance is still unknown. This study 
aims to explore the effect of PITPNC1 on radioresistance 
in rectal cancer. We reveal here that PITPNC1 promotes 
radioresistance by inhibiting ROS production in rectal 
cancer. 

Methods

Patient population

This study was approved by the Zhujiang Hospital 
(Guangzhou, China) Ethics Review Board. Frozen and 
formalin-fixed, paraffin-embedded rectal cancer tissue 
samples obtained from 16 patients were used in this study. 

Samples were taken from patients who underwent surgical 
treatment in the Zhujiang Hospital (Guangzhou, China) 
without other pre-surgical intervention.

Western blotting

Western blotting was performed complying with the 
standards set by our previous study (28). Cells required 
irradiation continued to be cultured for 48 h after the 
exposure to irradiation (0 Gy for negative controls and 4 Gy  
for experiment groups). The total protein of tissues and 
cells were homogenized using lysis buffer containing 
protease inhibitors (keyGEN, Nanjing, China) on ice. 
After centrifugation, the supernatant containing protein 
was collected. Total protein and 5 × SDS loading buffer 
were mixed and boiled at 100 ℃ for 5 min. Samples 
were separated using electrophoresis on 10% SDS-
polyacrylamide gel and then transferred onto polyvinylidene 
fluoride membranes. The membranes were subsequently 
blocked for 1 h at room temperature with 5% skim milk 
supplemented with 0.1% Tween 20 (TBST). Membranes 
were then incubated overnight with a primary antibody at  
4 ℃ and then with a secondary antibody for 60 min at room 
temperature. Immunoreactive bands were then visualized 
using a chemiluminescence (ECL) detection system or 
LI-COR Odyssey infrared imaging system. All used first 
antibodies include: PITPNC1 (Sigma, Saint Louis, MO, 
USA), Cleaved Caspase-3 (Cell Signaling Technology, 
Danvers, MA, USA), γH2AX (Abcam, Cambridge, MA, 
USA), β-actin (Proteintech, Chicago, IL, USA).

Histological analysis

Immunohistochemical (IHC) staining was performed using 
patient-derived, formalin-fixed, and paraffin-embedded 
rectal cancer tissue samples. Samples were then sectioned 
and immunostained as previously reported (28). The 
primary antibody PITPNC1 (Sigma, Saint Louis, MO, 
USA, 1:200 dilution) was used. The PV-9000 general two-
step test kit was used for secondary antibody incubation and 
staining.

Cell culture and transfection

Six human rectal cancer cell lines, including HCA7, DIFI, 
Coco-2, HCT116, SW620, and LOVO, were obtained 
from Foleibao Biotechnology Development Co. (Shanghai, 
China). All cell lines were cultured as previously reported (28) 
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in RPMI 1640 medium supplemented with 10% fetal bovine 
serum (HyClone, Logan, UT, USA) in a 37 ℃ incubator 
under 5% CO2. For the knocking down of PITPNC1, 
shPITPNC1 (sequence: CCGGCAATGGATGAAGTCC
GAGAATCTCGAGATTCTCGGACTTCATCCATTGT
TTTTG) was applied. For the clearance of ROS, the ROS 
scavenger, N-acetyl-L-cysteine (NAC), was employed, and 
2.5 nM NAC was added in each plate. 

Cell survival assay

MTT assay was adopted to analyze the survival rate of cells. 
All cells were plated in 96-well plates (approximately 5,000 
cells per well) with 5 replicates and exposed to irradiation 
of 4 Gy using a linear accelerator (Elekta, Sweden). Twenty 
μL 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium 
Bromide (MTT) solution (5 mg/mL) was then added to 
each well. The original medium containing MTT was 
completely removed after incubated for 4 h, after which 
150 μL dimethylsulfoxide (DMSO) was added to each well. 
The optical density (OD) was measured using a SpectraMax 
M5 microplate reader (Molecular Devices, Sunnyvale, CA, 
USA) at 490 nm on day 0, 1, 2, 3, and 4. The cell survival 
rate of day n (%) was calculated as (OD570 of day n/OD570 of 
day 0) × 100%.

Colony formation assay

Cultured cells were exposed to irradiation (0 Gy for 
negative controls and 4 Gy for experiment groups) and then 
trypsinized and plated in 6-well plates at a density of 500 
cells per well. The medium was replaced every second day. 
Cells were cultured under 5% CO2 at 37 ℃ for 2 weeks. 
Cells were then fixed using 4% paraformaldehyde and 
stained with crystal violet. The numbers of colonies were 
counted under microscope.

Flow cytometry assay

Cells were seeded on 6-well plates at a density of 2×105 cells 
per well. Forty-eight h after the exposure to irradiation 
(0 Gy for negative control and 4 Gy for experiment 
group), cells were trypsinized and collected for later 
experiments. For the analysis of apoptosis, Annexin V-FITC 
Apoptosis Detection Kit (KeyGEN, Nanjing, China) 
was applied according to the manufacturer’s protocol. 
For the measurement of ROS production, fluorescent 
2’,7’-dichlorofluorescein diacetate (DCF-DA) was used, 

and ROS was detected as described in the manufacturer’s 
protocol in the commercial kit (Nanjing Jiancheng, China).

Bioinformatic analyses

The microarray data of all cases with radiosensitivity data in 
GSE56699 was downloaded under the GPL14951 platform 
(Illumina HumanHT-12 WG-DASL V4.0 R2 expression 
beadchip) from the Gene Expression Omnibus (GEO). 
The RNA-seq data from a total of 166 rectal cancer cases 
were downloaded from The Cancer Genome Atlas (TCGA) 
database. For the microarray data, the R package ‘limma’ 
was applied for differential gene analysis. For the RNA-seq 
data, the R package ‘EdgeR’ was used for differential gene 
analysis. All bioinformatics analyses using the R language was 
performed with R 3.5.3 (R Project for Statistical Computing, 
Vienna, Austria).  Gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment 
analyses were performed using the online tool Database 
for Annotation, Visualization, and Integrated Discovery 
(DAVID) v6.8. Gene Set Enrichment Analysis (GSEA) was 
performed using the software GSEA v4.0.3 (29,30).

Statistical analyses

Each experiment was performed in at least triplicate. All 
statistical analyses were performed using the SPSS 22 
software (SPSS, Chicago, IL, USA). Differences between 
experimental groups were assessed by Student’s t-test (two 
groups) or one-way analysis of variance (ANOVA) (more 
than two groups). All values were expressed as mean ± SD, 
and statistical significance was defined as P<0.05. *, P<0.05; 
**, P<0.01; ***, P<0.001; ****, P<0.0001.

Results

The relevance of the high expression of PITPNC1 with 
radioresistance in rectal cancer tissues

To investigate the relevance of PITPNC1 expression level 
and radioresistance in rectal cancer, we first performed 
a differential analysis using MicroArray data of 11 rectal 
cancer cases (5 radioresistant vs. 6 radiosensitive) from 
GSE56699. Compared to patients that did not manifest 
radioresistance, patients that did have significantly higher 
level of PITPNC1 expression (Figure 1A). To further 
validate this finding, the PITPNC1 protein level was 
detected in a total of 16 patient-derived rectal cancer 

file:///D:/%e8%81%94%e7%89%88/JGO%e8%bf%9e%e7%89%88/2020%e5%b9%b4/JGO-V11N1/%e2%80%9cJGO-V11N1%e2%80%9d%e6%96%87%e4%bb%b6%e5%a4%b9/javascript:;
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Figure 1 High expression of PITPNC1 in radioresistant rectal cancer tissue. (A) Heatmap of Illumina HumanHT-12 WG-DASL V4.0 
R2 expression beadchip data of rectal cancer tissue derived from 11 patients in GSE56699; (B) western blotting analysis of PITPNC1 level 
in colorectal cancer tissue from patients who manifested radioresistance and those who did not. Β-actin was used as a loading control; (C) 
quantization of western blotting result using relative expression level of PITPNC1 compared to β-actin; (D) immunohistochemistry results 
in the comparison of the expression level of PITPNC1 in radioresistant colorectal cancer tissue and radiosensitive tissue. Representative 
photographs of the two groups are shown. R, resistant; S, sensitive; RES, resistant; CR, complete remission; PITPNC1, phosphatidylinositol 
transfer protein, cytoplasmic 1.

specimens from our center classified as radioresistant (R) or 
radiosensitive (S) according to medical record using western 
blotting (Figure 1B,C) and immunohistochemistry staining 
(Figure 1D), and similar results were obtained. These results 
taken together show that the expression level of PITPNC1 
is significantly higher in radioresistant rectal cancer tissues 
compared to radiosensitive tissues.

High PITPNC1 expression in rectal cancer is associated 
with radioresistance and less ROS production

MTT assay was performed using common rectal cancer cell 
lines, including HCA7, DIF1, Coco-2, HCT116, SW620, 
and LOVO cultured under 4 Gy irradiation. Results showed 

that HCT116 had the strongest radioresistance, while 
SW620 had the weakest radioresistance (Figure 2A). These 
two cell lines were selected as representative radioresistant 
and radiosensitive rectal cancer cell lines for the following 
experiments. The expression level of PITPNC1 in 
HCT116 was significantly higher than SW620, as shown 
by western blotting (Figure 2B,C). We next investigated 
whether the correlation between high PITPNC1 expression 
and radioresistance was mediated by reduced ROS 
generation. Flow cytometry was adopted to assess the ROS 
production level of irradiated and non-irradiated SW620 
and HCT116 cells. We observed a significantly higher ROS 
generation level in SW620 compared to HCT116 in both 
irradiated and non-irradiated groups (Figure 2D,E). In order 
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Figure 2 High PITPNC1 expression in rectal cancer is associated with radioresistance and decreased ROS production. (A) MTT assay 
results of rectal cancer cell lines including HCA7, DIF1, Coco-2, HCT116, SW620 and LOVO exposed under irradiation; (B) western 
Blot analysis of PITPNC1 in rectal cancer cell lines with β-actin as the loading control; (C) quantization of western blotting result using 
relative expression level of PITPNC1 compared to β-actin; (D) flow cytometry results of ROS production in irradiated cells (red) compared 
to non-treated controls (blue) in SW620 and HCT116 cell lines; (E) quantization of flow cytometry results showing the relative content 
of ROS in SW620 and HCT116 cell lines using fold change normalized by controls; (F) GO & KEGG Enrichment analysis of TCGA 
rectum adenocarcinoma RNAseq data using down-regulated genes in cases with high PITPNC1 level compared with those with low 
PITPNC1 level; (G) GSEA results of the cases with the 25% highest PITPNC1 level compared to those with 25% lowest PITPNC1 
level derived TCGA rectum adenocarcinoma RNAseq data on oxidative phosphorylation and oxidative stress. IR, irradiation; PITPNC1, 
phosphatidylinositol transfer protein, cytoplasmic 1; ROS, reactive oxygen species; GO, gene ontology; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; GSEA, Gene Set Enrichment Analysis; TCGA, The Cancer Genome Atlas. **, P<0.01; ****, P<0.0001.

to comprehensively analyze the difference in oxidative stress 
condition between rectal cancer tissue with high PITPNC1 
level and low PITPNC1 level, we obtained RNA-seq data 
of 166 rectal cancer cases from TCGA. Cases were ranked 
according to the PITPNC1 level, and the 42 cases (25%, 
respectively) with the highest and the lowest PITPNC1 
level were classified as “PITPNC1 hi” and “PITPNC1 
lo”. The differential analysis identified 347 upregulated 

genes in the “PITPNC lo” group. (Data not shown) These 
genes were used to perform GO and KEGG enrichment 
analysis. Results of GO analysis showed that these genes 
were enriched in metabolic-related pathways that took part 
in ROS generation (Figure 2F). RNA-seq data was also used 
to perform GSEA, and 2 oxidative stress-related pathways 
showed significant enrichment in the “PITPNC1 lo” group, 
suggesting that rectal cancer tissue with low PITPNC1 
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expression level may be under a condition of more intense 
oxidative stress (Figure 2G). Conclusively, these results 
suggest that high expression of PITPNC1 in rectal cancer 
is related to decreased ROS production.

Maintenance of radioresistance in rectal cancer is 
PITPNC1-dependent

Base on the relevance between radioresistance and high 
expression of PITPNC1, we next explored whether the 
maintenance of radioresistance was PITPNC1-dependent. 
ShPITPNC1 was used to knockdown PITPNC1 in 
HCT116 and SW620. To know whether knocking down 
PITPNC1 reversed radioresistance, flow cytometry was 
employed to detect the apoptosis rate of differently treated 
groups. Results showed that the application of shPITPNC1 
elevated significantly the apoptosis rate in both irradiated 
and non-irradiated groups (Figure 3A,B). We next evaluated 
the effect of knocking down PITPNC1 on proliferation 
using colony formation assay. Similarly, we found that 
shPITPNC1 inhibited proliferation in both irradiated and 
non-irradiated groups (Figure 3C,D).

To further validate our findings, we performed western 
blotting to detect the level of phosphorylated H2A 
histone family member X on serine 139 (γH2AX), the 
DNA double-strand break marker (31), and the apoptosis 
marker, cleaved Caspase-3 (32). Results showed that 
irradiation could increase the expression of both proteins, 
and the application of shPITPNC1 further intensified this 
effect (Figure 3E,F,G,H), suggesting that knocking down 
PITPNC1 sensitizes rectal cancer cell lines to irradiation 
damage. In conclusion, radioresistance in rectal cancer is 
dependent on PITPNC1.

PITPNC1-dependent radioresistance in rectal cancer is 
mediated by inhibiting ROS generation

As mentioned above, the rectal cancer cell line with the 
higher PITPNC1 expression, HCT116, showed less ROS 
generation than SW620 under both irradiated and non-
irradiated conditions (Figure 2D,E). We thus explored 
whether this difference in ROS generation was resulted by 
the different expression levels of PITPNC1. We performed 
flow cytometry to analyze the effect of shPITPNC1 on 
ROS generation. A significantly higher ROS generation was 
observed in shPITPNC1 applied groups (Figure 4A,B). We 
then investigated whether the difference in radioresistance 
induced by different levels of PITPNC1 expression was 

ROS generation mediated. Flow cytometry assay showed 
that apoptosis induced by shPITPNC1 was reversed by 
NAC, a potent ROS scavenger (Figure 4C,D). Similarly, 
colony formation assay showed that proliferation inhibited 
by knocking down PITPNC1 was reversed by applying NAC 
(Figure 4E,F). The apoptosis marker, cleaved Caspase-3 
elevated by knocking down PITPNC1, was also partially 
reversed by NAC (Figure 4G,H,I,J). Of note, administrating 
NAC solely in shPITPNC1-free groups affected neither 
apoptosis nor proliferation (Figure 4C,D,E,F), suggesting 
the ROS generation-regulation effect of PITPNC1 
strongly. Taking together, we demonstrated that rectal 
cancer radioresistance is mediated by PITPNC1-regulated 
inhibition of ROS generation.

Discussion

Neoadjuvant radiotherapy has become a crucial part of the 
comprehensive management of patients with rectal cancer 
in recent years, and its usage has significantly improved 
life quality and survival (4-6). Nevertheless, radioresistance 
remains a major challenge for further improvement 
of therapeutic effects of neoadjuvant radiotherapy and 
clinical decision-making. Also, there is a lack of a thorough 
understanding of the underlying mechanisms in the 
development of radioresistance is thus of great clinical 
importance. 

Radiation-induced cell death initiates from the mass 
generation of ROS, which subsequently causes DNA double-
strand break and, consequently, apoptosis or necrosis (33). 
Previous studies have already identified multiple different 
possibilities to speculate the causes of the development of 
radioresistance in rectal cancer, including DNA repair system 
(34-39), apoptosis and cell survival (36,38-41), epithelial-
mesenchymal transition (EMT) (37,42), tumor stem cell (43), 
and the generation of ROS (44), suggesting that the process 
of radioresistance-development may be complex. 

For DNA repair system-related mechanisms, Ha Thi et al. 
reported that miR-130a targets sex determining region Y-box 
4 (SOX4) and thus activates downstream ataxia-telangiectasia 
mutated (ATM)-mediated DNA repair (37). Rab5 and 
replication factor C subunit 4 (RFC4) are demonstrated to 
facilitate the expression of non-homologous end joining DNA 
repair-related proteins, Ku70 and Ku80 (34,35). In another 
recent study by Ferrandon et al., knocking down coenzyme A 
synthase (COASY) hindered DNA double-strand break (38). 
For apoptosis and cell surviving-related mechanisms, Survivin 
was found to play an important role in inhibiting apoptosis 
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Figure 3 Knocking down of PITPNC1 reverses radioresistance. (A) Flow cytometry assessing the influence of knocking down PITPNC1 
on apoptosis. Cultured SW620 and HCT116 cells were treated with irradiation exposure and/or shPITPNC1 transfection, with non-treated 
groups as a negative control; (B) quantization of flow cytometry results using an absolute apoptosis rate; (C) colony formation assay assessing the 
influence of knocking down PITPNC1 on proliferation. SW620 and HCT116 cells were treated with irradiation exposure and/or shPITPNC1 
transfection. Non-treated groups served as a negative control. Cells were stained with crystal violet after fixation; (D) quantization of colony 
formation assay results normalized using the number of colonies in the control group. Western blot results of the level of DNA damage- and 
apoptosis-related proteins in the differently treated (E) SW620 and (F) HCT116 cells. And quantization of western blotting results of (G) 
SW620 and (H) HCT116 cells using relative expression level of γH2AX, cleaved Caspase-3 and PITPNC1 compared to β-actin. IR, irradiation; 
PITPNC1, phosphatidylinositol transfer protein, cytoplasmic 1. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001.
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Figure 4 Knocking down of PITPNC1 reverses radioresistance via facilitating ROS generation. (A) Flow cytometry measuring the ROS 
generation under different treatments in SW620 (left) and HCT116 (right). SW620 and HCT116 cells were treated with irradiation exposure 
and/or shPITPNC1 transfection. Non-treated groups served as control; (B) quantization of flow cytometry results in panel (A) normalized 
using the level of the control group; (C) flow cytometry assessing the influence of ROS scavenger, NAC, on apoptosis. ShPITPNC1-transfected 
or -non-transfected SW620 and HCT116 cells were cultured in normal medium or medium with 2.5 nM NAC; (D) quantization of flow 
cytometry results in panel (C) using an absolute apoptosis rate; (E) colony formation assay assessing the influence of NAC on proliferation. 
ShPITPNC1-transfected or -non-transfected SW620 and HCT116 cells were cultured in normal medium or medium with 2.5 nM NAC. 
Cells were stained with crystal violet after fixation; (F) quantization of colony formation assay results normalized using the number of colonies 
in the control group. Western blot data showing an assessment of the impacts of NAC on the cleavage of Caspase-3 protein in (G) SW620 and 
(H) HCT116 cell lines with β-actin serving as the loading control. And quantization of western blotting results of (I) SW620 and (J) HCT116 
cells using relative expression level of cleaved Caspase-3 and PITPNC1 compared to β-actin. IR, irradiation; PITPNC1, phosphatidylinositol 
transfer protein, cytoplasmic 1; ROS, reactive oxygen species; NAC, N-acetyl-L-cysteine. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001.
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in rectal cancer (39,41), whose expression was reported 
to be elevated by fibroblast growth factor 8 (FGF8) (36). 
Besides, as reported by Xiao et al., inhibiting retinoblastoma-
binding protein 6 (RBBP6) led to radiation-induced 
G2-M arrest and apoptosis via attenuation of p53/mouse 
double minute 2 (MDM2) interaction in rectal cancer (40).  
However, as the upstream initiator of these effects, very few 
studies investigated the role played by increased generation 
of ROS in rectal cancer radioresistance. Only one study 
by Yu et al. reported that multidrug resistance-associated 
protein 3 (MRP3) aggravates radioresistance by reducing 
ROS production (44). In this study, we for the first time 
demonstrated that the lipid metabolism-related protein, 
PITPNC1, fuels rectal cancer radioresistance via inhibition of 
the generation of ROS, consistent to a previous work which 
reported an increased mortality in rectal cancer patients 
carrying the low ROS producing endothelial nitric oxide 
synthase (eNOS) Glu298Asp asparagine allele compared 
to the homozygous carriers of the glutamine allele (45).  
Our findings add new information to the profile of the 
mechanisms in rectal cancer radioresistance. 

In conclusion, we found that PITPNC1 was highly 
expressed in radioresistant patient-derived rectal cancer 
tissue compared to radiosensitive tissue; PITPNC1 
inhibited the generation of ROS and improved the extent of 
radioresistance of rectal cancer cell lines and subsequently 
inhibited apoptosis. Knocking down PITPNC1 facilitated 
the production of ROS while application of the ROS 
scavenger, NAC, reversed this effect. Thus, our study 
proved that PITPNC1 fuels radioresistance of rectal cancer 
by inhibiting ROS production.
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