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Background: Metastatic colorectal cancer (mCRC) is a heterogeneous disease. Predictive biomarkers 
are in great demand to optimize patient selection at high risk for death and to provide a novel insight into 
potential targeted therapy.
Methods: The present study retrospectively analyzed the gene expression profiles of tumor tissue samples 
from 4 public CRC cohorts, including 1 RNA-Seq data set from The Cancer Genome Atlas (TCGA) CRC 
cohort and 3 microarray data sets from GEO. Prognostic analysis was performed to test the predictive value 
of prognostic gene signature. 
Results: Of 192 patients, 108 patients (56.3%) were men and median age was 65 years. A prognostic gene 
signature that consisted of 15 unique genes was generated in the discovery cohort. In the meta-validation 
cohorts, the signature significantly classified patients into high-risk and low-risk groups with regard to 
overall survival (OS) in mCRC patients with advanced stage disease and remained as an independent 
prognostic marker in multivariable analysis (1.57; 95% CI: 1.16–2.11; P=0.003) after adjusting for clinical 
parameters and molecular types. Gene Set Enrichment Analysis showed that several biological processes, 
including angiogenesis (P<0.001), epithelial mesenchymal transit (P<0.001) and inflammatory response 
(P=0.001), were enriched among this prognostic gene signature.
Conclusions: The proposed prognostic gene signature is a promising prognostic tool to estimate OS in 
mCRC. Prospective larger studies to examine the clinical utility of the biomarkers to guide individualized 
treatment of mCRC are warranted.
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Introduction

Metastatic colorectal cancer (mCRC) ranks the third most 
common cause of death from cancer worldwide (1), and the 
incidence of mCRC is growing, especially among younger 
patients (2). mCRC is a highly heterogeneous disease, 
which can show a wide range of clinical behavior, from 
curable oligometastatic disease to rapidly developing lethal 
disease (3). 

Biomarkers which can reliably evaluate disease 
progression and survival outcome would have great value 
in guiding the treatment of mCRC. For instance, only a 
small proportion of mCRC patients are responsive to EGF 
receptor (EGFR)-targeted or VEGF receptor (VEGFR)-
targeted therapies (4-6), while no appropriate targeted 
therapies have been shown efficacy to the remaining 
patients. Thus, identification of new biomarkers to optimize 
patient selection at highest risk for death and to provide a 
novel insight into target therapy is warranted.

Current prognostic models use histoclinical parameters 
for prognostication of patients have limitation in capturing 
molecular heterogeneity of this disease. Previous studies have 
provided some prognostic mRNAs for mCRC patients (7-10). 
However, none has been applicated into clinical use due to 
issues such as lack of consideration of other gene expressions 
and adequate validation. The availability of public, large-scale 
gene expression data profiling provides the opportunity to 
define reliable mCRC markers. Multiple gene expression data 
sets were combined to develop and validate an individualized 
gene-expressed signature for the survival of mCRC. The 
aim of this study is to identify the potential prognostic gene 
expression-based biomarkers of metastatic tumors.

Methods

Patients

Gene expression profiles of frozen colorectal cancer tumor 
tissue samples were from 4 public cohorts, including 73 
stage IV CRC patients from TCGA CRC (11) as discovery 
cohort and 3 microarray data sets (GSE39582, GSE39084, 
and GSE17536) (12-14) obtained from Gene Expression 
Omnibus (GEO) database that were merged into a meta-
validation cohort. We retrospectively analyzed these 
profiles. TCGA CRC cohort was downloaded from Broad 
GDAC Firehose (http://gdac.broadinstitute.org/) and 
transcripts per million (TPM) of level 3 RNA-Seq data in 
log2 scale were used. Other data sets were obtained directly 
in its processed format from GEO database through 

Bioconductor package ‘GEOquery’. Overall, 192 mCRC 
patients with valid survival information were included in 
this study. The batch effects were corrected using ‘combat’ 
algorithm implemented in R package ‘sva’ and z-scores 
for each gene were used for the following analyses. Data 
were collected from Dec 03 to Feb 04, 2018. We carefully 
reviewed both paper charts and electronic medical records 
when necessary. The present study obtained ethics approval 
from Sun Yat-sen University, Sixth Affiliated Hospital.

Construction and validation of mCRC prognostic gene 
signature

In order to construct a mCRC Prognostic Gene Signature 
(PGS), we first identified a list of candidate genes with 
relatively large variation [(median absolute deviation 
(MAD) >0.5]. Furthermore, to increase the robustness of 
the identification for the limited sample size, prognostic 
signature genes were further selected using the log-rank 
test with 100 randomizations (80% portion of samples each 
time) to assess the correlation between each candidate gene 
and patients’ overall survival (OS) in the discovery cohort. 
The genes showed significance repeatedly were selected 
as the candidates of the mCRC prognostic signature. For 
minimize over-fitting risk, we applied a Cox proportional 
hazards regression model on all advanced stage samples 
(stage III/IV) in combination of the least absolute shrinkage 
and selection operator (LASSO) (glmnet, version 2.0-16). 
The penalty parameter was calculated by 10-fold cross-
validation in the training data set at the minimum partial 
likelihood deviance. 

In order to stratify patients into low-risk or high-risk 
subgroups, the optimal cutoff value was determined by a 
time-dependent receiver operating characteristic (ROC) 
curve (survival ROC, version 1.0.3) at 3 years in the training 
dataset. The ROC curve was estimated by the Kaplan-Meier 
estimation method. We used the shortest distance between 
point representing the 100% true positive rate and 0% false-
positive rate and the ROC curve as the cutoff value.

The prognostic value of the PGS was assessed in mCRC 
patients in the training and independent validation cohorts 
in univariable analyses respectively. Then we compared the 
risk scores derived from the gene signature with available 
clinicopathologic parameters in multivariable analyses. 

Functional annotation and analysis

To investigate the biological characteristic of the gene 
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signature, we conducted enrichment analysis for interested 
biological pathways, Bioconductor package ‘HTSanalyzeR’ 
was used to perform by Gene Set Enrichment Analysis 
(GSEA) (15). 

Statistical analysis

R software (version 3.5.1; http://www.Rproject.org) was 
used to conduct statistical analysis. Statistical description 
was analyzed for all variables. These included frequencies 
for categorical parameters, and means and standard 
deviations (SD) or medians and interquartile ranges 
(IQR) for continuous parameters. Continuous values were 
compared using Student-t tests between different groups. 
Univariable analysis of the correlation of PGS and other 
clinicopathologic features with OS was estimated using 
log-rank test. For features significantly correlated with 
OS in univariable analyses, the Cox proportional hazards 
regression model was used to perform multivariable 
analysis. P value less than 0.05 was defined as statistical 
significance in all tests.

Results

Construction and definition of the gene expression 
signature

A total of 192 CRC patients were included in the analysis. 
The baseline clinical characteristics of training and 
validation data sets were shown in Table 1. From TCGA 
dataset, 18,113 genes were measured by all platforms and 
4,172 genes were filtered by the conditions with MAD 
more than 0.5 and expression level more than median level. 
Using Cox regression to resample the discovery cohort, 
the association of 4,172 genes with OS was analyzed, 
resulting in 197 robust prognostic genes (>75 times showed 
significant during resampling). Then a prognostic gene 
signature (PGS) consisting of 15 genes was constructed 
with the use of LASSO Cox proportional hazards regression 
on the training cohort (Figure 1 and Table S1). The optimal 
cutoff from ROC curve analysis for the PGS to classify 
patients into the high or low risk group was 0.971 for 3-year 
OS (Figure 2).

Validation of the gene expression signature

Univariate analysis showed that the PGS classified patients 
into low-risk and high-risk groups in terms of OS in mCRC 
patients from TCGA dataset (Figure 3A) and meta-validation 
(Figure 3B). After adjusting for clinical features such as 
age, gender, tumor location and molecular types, PGS still 

Table 1 Clinical characteristics of training and meta-validation  
cohorts

Variables
Training 
cohort

Meta-validation 
cohort

Total No. 73 119

Age, year (median, SD) 66±12 64±14

Sex, n

Male 44 62

Female 29 57

Tumor location, n

Left 49 54

Right 24 25

NA 0 40

T classification, n

T2 2 2

T3 48 43

T4 23 34

NA 0 39

N classification, n

N0 7 15

N1 29 32

N2 37 31

NA 0 40

Mismatch repair status, n

MSI 21 3

MSS 52 75

NA 0 41

KRAS mutation, n

Wide type 11 42

Mutate type 8 38

NA 54 39

NA, not applicable; MSI, microsatellite instability; MSS,  
microsatellite stability. 
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Figure 1 Identification and selection of prognostic genes by LASSO Cox proportional hazards regression. (A) LASSO coefficient profiles 
of the 15 robust prognostic genes; (B) clustering of the top 15 robust prognostic genes (rows) was identified by LASSO Cox proportional 
hazards regression in the training dataset from TCGA. The heatmap reflects relative mRNA expression levels. 

Figure 2 The optimal cutoff from ROC curve for the prognostic 
gene signature at the endpoint of 3-year OS. OS, overall survival; 
ROC, receiver operating characteristic. 

resulted as an independent prognostic factor in multivariate 
analyses (11.54; 95% CI: 4.44–29.99; P<0.001). A higher 
GPI was associated with significantly poorer prognosis in 
the independent meta-validation cohorts (1.57; 95% CI: 
1.16–2.11; P=0.003). Overall, the PGS may estimate OS 
independently of clinical parameters in mCRC (Table 2).

Functional annotation of the prognostic genes

We further investigate the potential functional mechanisms 
between the high risk and low risk divided by PGS. Gene 
Set Enrichment Analysis (GSEA) was performed between 
predicted high-risk vs. low-risk groups for cancer hallmark 
pathways, and identified several cancer-related biological 
processes gene sets including angiogenesis (P<0.001), 
epithelial mesenchymal transit (P<0.001), inflammatory 
response (P=0.001), TNF-α-NF-κB (P<0.001), IL6-JAK-
STAT3 (P=0.002) and interferon-α response (P<0.001) 
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Table 2 Univariate and multivariable analysis of molecular, clinical and prognostic gene signature in training and validation cohorts

Univariate

Training cohort Meta-cohort microarray validation set

Univariate analysis Multivariable analysis Univariate analysis Multivariable analysis

HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P

PGS 13.17 (5.20–33.39) 0.001*
11.54  

(4.44–29.99)
0.001* 1.57 (1.16–2.11) 0.0031

1.57  
(1.16–2.11)

0.0031

Sex 1.90 (0.60–6.00) 0.26 NA NA 1.42 (0.93–2.19) 0.11 NA NA

Age 1.03 (0.98–1.09) 0.18 NA NA 1.01 (1.00–1.03) 0.081 NA NA

Tumor location 0.25 (0.09–0.70) 0.0045
0.40  

(0.11–1.40)
0.15 1.18 (0.65–2.15) 0.59 NA NA

T stage 2.39 (0.85–6.73) 0.095 NA NA 1.01 (0.64–1.61) 0.95 NA NA

N stage 0.58 (0.13–2.62) 0.47 NA NA 1.00 (0.50–1.99) 0.99 NA NA

MMR status 1.13 (0.36–3.60) 0.83 NA NA 3.22 (0.44–23.39) 0.22 NA NA

KRAS mutation 0.46 (0.05–4.46) 0.49 NA NA 0.67 (0.39–1.16) 0.15 NA NA

*, P<0.001. PGS, prognostic gene signature; HR, hazard ratio; CI, confidence interval. 

Figure 3 Univariate analyses of prognostic gene signature in terms of OS in mCRC patients from TCGA dataset (A) and meta-validation (B). 
OS, overall survival; mCRC, metastatic colorectal cancer

signal pathways (Figure 4). These findings suggested that 
an altered expression of PGS may be related with colorectal 
cancer biology via the disruption of known critical 
biological pathways involved in cancer progression.

Discussion

Patients with mCRC are at substantial risk for death. The 
treatment for mCRC is complicated and the outcome is 
not promising. Therefore, reliable prognostic markers are 

in great need to select patients at the highest risk for death 
and require more intensive treatment. Here a prognostic 
gene expression signature was developed for mCRC and 
was further validated in independent multiple datasets. This 
prognostic gene signature stratifies stage IV CRC patients 
into subsets with different survival outcomes.

Recently several independent studies have proposed 
prognostic subtypes based on distinct global gene expression 
profiles to improve the stratification and treatment of 
CRC patients (16-19). However, none has investigated 
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Figure 4 Gene Set Enrichment Analysis between predicted risk groups identified several cancer-related biological processes gene sets 
including angiogenesis, epithelial mesenchymal transit, inflammatory response, TNF-α-NF-κB, IL6-JAK-STAT3 and interferon-α response 
signal pathways.

the role of gene expression in mCRC that harbor tumor 
heterogeneity. Thus, an individualized approach to stratify 
patients and guide treatment of mCRC is in great need. To 
provide a more accurate calculation of OS, we integrated 
clinicopathological characteristics and gene expression-
based signatures from multiple public data sets and applied 
methods which are exclusively designed across different 
platforms with RNA-Seq or microarray technologies. 
Moreover, our prognostic gene signature was validated 
by multiple independent data sets, which may provide 
opportunity to translate into clinical routine practice.

Prognostic or predictive biomarkers which was 
associated with tumor microenvironment may hold great 
promise to identify new molecular targets and improve 
patient individualized management. Our analysis showed 

that gene expressions from angiogenesis signal pathway 
were associated with survival outcome of mCRC, which 
was consistent with the previous findings. The only 
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Food and Drug Administration for the first-line treatment 
of mCRC and shows improvement in response rate (RR) 
and progression-free survival (PFS) (20-22). Furthermore, 
some genes contained in signature played an important 
role in the pathways of epithelial mesenchymal transition 
(EMT), which is responsible for the development and 
aggressiveness of mCRC. Similarly, Calon et al. identified 
stromal gene expressions for EMT which defined the 
poor-prognosis subtype in CRC (23). Our proposed gene 
signatures also implied the crucial role of inflammatory 
response in mCRC. As many studies showed, an increased 
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inflammatory microenvironment has been demonstrated to 
be an important element of neoplastic process and tumor 
progression (24-27). Our GSEA identified TNF-α-NF-κB 
and IL6-JAK-STAT3 pathways, which were well-known 
to play a crucial role in the progression and proliferation 
of mCRC in numerous studies (28-30). Above all, our 
proposed gene signatures included the molecules from 
various crucial biological processes.

Limitations of the present study include its retrospective 
nature ,  a l though we va l idated  the  s ignatures  in 
independent data sets. Furthermore, gene expression-
based signatures that are subject to the samples from 
primary tumor or metastatic disease may have inconsistent 
genetic heterogeneity. Although we investigated as many 
genes as possible, future studies are need to explore 
different biological processes that could provide a more 
comprehensive molecular landscape of mCRC. 

Conclusions

In summary, the proposed gene expression-based signature 
is a promising prognostic tool to predict survival in mCRC. 
Further prospective studies are in need to validate its 
feasibility of analysis for assessing prognoses and to exam its 
clinical utility in personized treatment of mCRC.
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Table S1 List of genes and variables in lasso-cox model

Gene Name Coefficient Average P value Frequency in resampling

ACOT11 Acyl-CoA thioesterase 11 −0.07332 0.004561 0.98

C12orf45 Chromosome 12 open reading frame 45 0.151998 0.005777 1

CHDH Choline dehydrogenase −0.17884 0.000235 1

COX17 Cytochrome c oxidase copper chaperone COX17 0.518366 0.016143 0.99

CTNNB1 Catenin beta 1 −0.05411 0.009236 0.99

CYP2S1 Cytochrome P450 family 2 subfamily S member 1 −0.06485 0.003946 0.99

DDTL D-dopachrome tautomerase like −0.00135 0.016232 0.94

DUSP18 Dual specificity phosphatase 18 −0.15372 0.001322 1

FAM221A Family with sequence similarity 221-member A 0.021363 0.040838 0.77

FGFR4 Fibroblast growth factor receptor 4 −0.09593 0.001142 1

KLC4 Kinesin light chain 4 −0.25503 0.007203 0.97

LARS2 Leucyl-tRNA synthetase 2 mitochondrial −0.14444 0.027633 0.84

PFDN6 Prefoldin subunit 6 0.126019 0.015842 0.94

SLC27A3 Solute carrier family 27 member 3 −0.0091 0.032447 0.78

TNFRSF11A TNF receptor superfamily member 11a −0.11054 0.043234 0.76
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