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STK17B promotes the progression of ovarian cancer

Liping Jiang1,2#, Jinhua Zhou1#, Shaojie Zhao2, Xuzhen Wang3, Youguo Chen1

1Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China; 2Department of Gynecology, 

The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China; 3Department of Breast Surgery, The 

Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China

Contributions: (I) Conception and design: Y Chen; (II) Administrative support: J Zhou; (III) Provision of study materials or patients: Y Chen, S 

Zhao; (IV) Collection and assembly of data: L Jiang; (V) Data analysis and interpretation: X Wang; (VI) Manuscript writing: All authors; (VII) Final 

approval of manuscript: All authors.
#These authors contributed equally to this work.

Correspondence to: Youguo Chen. Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, 

Suzhou 215006, China. Email: chenyouguo@suda.edu.cn.

Background: Protein kinase is increasingly receiving widespread attention because of its role in the tumor 
progression. Serine/threonine protein kinase (STK) is an important family involved in the development of a 
variety of cancers. Many studies have shown that serine/threonine kinase 17B (STK17B) is highly expressed 
in a variety of malignant tumors and participate in proliferation and metastasis. However, the exact function 
of STK17B remains uncertain in ovarian cancer. Our study aims to investigate whether STK17B plays a role 
in the occurrence and development of epithelial ovarian cancer.
Methods: We employed quantitative reverse transcription polymerase chain reaction to detect the relative 
expression of STK17B in ovarian cancer tissues. STK17B was down-regulated and up-regulated in ovarian 
cancer cell lines by small interfering RNA and overexpressed plasmid, respectively. The effects of STK17B on 
proliferation, invasion and migration of ovarian cancer cells in vitro were analyzed by CCK-8 test, Transwell 
test, scratch test and EDU test. The tumorigenicity of subcutaneous xenograft tumor in nude mice to study 
the role of STK17B in tumorigenesis in vivo. Western Blotting analysis revealed that STK17B and EMT.
Results: STK17B expression was significantly increased in ovarian cancer tissues. The STK17B silencing 
suppressed cell progression, while the overexpression of STK17B promoted progression in vivo or in vitro. 
Western bolt showed that STK17B increased the invasion and migration of ovarian cancer cell by promoting 
the EMT process.
Conclusions: STK17B was highly expressed in epithelial ovarian cancer tissues and increased the 
proliferation, invasion and migration of ovarian cancer cells by promoting EMT process.
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Introduction

Ovarian cancer has the highest mortality rate of all female 
reproductive system cancers (1-4). Due to its insidious 
onset, most patients are diagnosed at an advanced stage. 
Patients with advanced ovarian cancer often have extensive 
intraperitoneal metastasis that cannot be treated by surgery, 
resulting in tumor recurrence and death (5-8). Therefore, 

the aim of the present study was to elucidate the mechanism 
of ovarian cancer in order to determine the most effective 
therapy for its treatment.

Death-associated protein apoptotic kinase 2 (DRAK2); 
also known as serine/threonine kinase 17B (STK17B) 
is a threonine/serine kinase, a member of the family of 
death-related protein kinases, and a positive regulator of  
apoptosis (9). The MYB (v-myb avian myeloblastosis 
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viral) oncogene represses DRAK2 expression to suppress 
apoptosis in acute myeloid leukemia cells (10). The 
downregulation of STK17B in TRAIL-R1 mAb-sensitive 
cells upregulates Bcl-2 expression and restrains TRAIL-R1 
mAb-induced apoptosis (11). DRAK2 is located a 2q32.3 
deletion that was discovered by Sanjo et al. in 1998 (12). In 
recent years, STK17B has been found to be significantly 
upregulated in a variety of malignant tumors. For example, 
STK17B promotes carcinogenesis and metastasis in 
hepatocellular carcinoma (13). The aberrant expression of 
DRAK2 promotes tumorigenic potential by downregulating 
transforming growth factor-β1 activity (14). STK17B could 
be a potential prognostic marker and therapeutic target in 
multiple myeloma patients (15).

Studies have found that epithelial mesenchymal 
transition (EMT) is involved in the development of tumors 
and promotes the migration of cancer cells (16-18).

In ovarian cancer, STK17B expression is significantly 
increased. Western bolt showed that STK17B increased the 
invasion and migration of ovarian cancer cell by promoting 
the EMT process. We present the following article in 
accordance with the ARRIVE reporting checklist (available 
at http://dx.doi.org/10.21037/atm-21-601).

Methods

Tissue sample

A total of 35 pairs of ovarian cancer samples were obtained 
from patients who had undergone ovariectomy. The study 
was approved by the Ethical Committee of The Affiliated 
Wuxi Maternity and Child Health Care Hospital of 
Nanjing Medical University (No. 2014-06-0120-06). All 
patients provided signed informed consent. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Cell line and culture

SKOV3 and OV8 were obtained from the Institute of 
Cell Biology, Chinese Academy of Sciences in Shanghai. 
They were incubated in RPMI-1640 with 100 μg/mL 
streptomycin, 100 U/mL penicillin (Hyclone, Logan, UT, 
USA) and 10% fetal bovine serum (FBS). All cells were 
maintained at 37 ℃ in 5% CO2 in an incubator.

Transfection

si-STK17B-1 sense (5'-GCCUGUGUUUACCUGAGU 
UTT-3'), antisense 5'-AACUCAGGUAAACACAGGC 
T-3'; si-STK17B-2 sense (5'-GCUACAGCAGUGGGA 
UUUTT-3'), antisense 5'-AAAGUCCCACUGCUG 
AGCTT-3') (as shown in Table 1).

Gene Pharma (Suzhou, China) and Fubio (Suzhou, 
China) provided the negative control siRNA and si-RNA 
(si-STK17B), pcDNA3.1-STK17B, and pcDNA3.1-NC 
plasmids. Cells were harvested after >24 h transfection 
in OV8 and SKOV3 cells using Lipofectamine 3000 
(Invitrogen, USA).

Quantitative reverse transcription polymerase chain 
reaction (qRT-PCR)

Total RNA was obtained by Trizol reagent (Invitrogen, 
USA), according to the manufacturer’s instructions. 
STK17B primers were as follows: forward: 5'-GCC 
GTGTTTACCTGAGTTGG-3'and reverse: 5'-TG 
CCCCGAGAGGGTATATGC-3' (as shown in Table 1). 
The PrimeScript RT Reagent Kit with gDNA Eraser 
(Takara) was used to synthesize cDNA from whole RNA. 
STK17B expression was detected by qRT-PCR on the 
CFX96 sequence detection system (Bio-Rad) using SYBR 
Premix Ex Taq II (Takara). GAPDH and U6 small nuclear 

Table 1 Sequences of primers and siRNAs

Gene Sequences

PCR primer set

STK17B Forward: 5'-GCCTGTGTTTACCTGAGTTGG-3'; reverse: 5'-TGTCCCCGAGAGGGTATATGC-3'

GAPDH Forward: 5'-CATCTCTGCCCCCTCTGCTGA-3'; reverse: 5'-GGATGACCTTGCCCACAGCCT-3'

siRNA set

si-STK17B-1 Sense: 5'-GCCUGUGUUUACCUGAGUUTT-3'; antisense: 5'-AACUCAGGUAAACACAGGCTT-3'

si-STK17B-2 Sense: 5'-GCUACAGCAGUGGGACUUUTT-3'; antisense: 5'-AAAGUCCCACUGCUGUAGCTT-3'
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RNA were used as endogenous controls.

Cell proliferation assay

Ovarian cancer cell proliferation was assessed by Cell 
Counting Kit-8 (CCK-8) (Beyotime, Shanghai, China) 
and 5-ethynyl-20-deoxyuridine (EdU; Beyotime, China). 
Cells were inoculated in 96-well plates after transfection. 
At 0, 24, 48, and 72 h, 10 μL CCK-8 solution was added 
to each well. Cells were then cultured for a further 1–2 h. 
The optical density of the cells at a 450-nm wavelength was 
measured. The EdU trial was played out according to the 
introduction.

Migration assay

Ovarian cancer cell migration was evaluated by the wound 
healing assay. Cells were cultivated in 6-well plates after  
48 h of transfection with STK17B siRNA. 90% confluence 
was obtained before transfection. A clean line in the middle 
of 6-well plates by 200-μL sterilization pet tips, then washed 
the floating cells with PBS. Finally, the travel distances were 
taken pictures at 0 and 24 h in order to estimate the ability 
of cell wound healing.

Transwell assay

Cell invasion was detected by transwell chambers and 
Matrigel (Corning, USA). 100 μL (5×104) Serum-free 
medium contained cells were added into the upper chamber 
coated with Matrigel, and 500 μL Dulbecco’s modified 
Eagle’s medium containing 20% FBS was added to the 
bottom chamber. After 48 h, cells in the upper chamber 
were removed, and cells in the lower membrane were 
stained with 0.1% crystal violet. Invaded cells were counted 
under a microscope.

Western blot

RIPA Lysis Buffer (Beyotime, China) with protease 
inhibitors was used to lyse cells for total protein extraction. 
After denaturation, the protein samples were separated 
with 10% sodium dodecylsulfate-polyacrylamide gel 
electrophoresis and transferred to a polyvinylidene difluoride 
membrane (Millipore, USA). After being blocked with 
5% skim milk, the membrane, together with the primary 
antibodies, including STK17B, E-Cadherin, N-Cadherin, 
Vimentin, Twist, Slug, Snail., were incubated at 4 ℃ for 

14–16 h. Above primary antibodies were then rinsed 3 times 
with TBST and incubated with anti-mouse or anti-rabbit 
horseradish peroxidase-coupled secondary antibodies for  
1 h at room temperature. They were then rinsed 3 times 
with TBST. An electrochemical luminescence kit (Beyotime, 
China) was used to visualize the protein bands.

Animal experiments

In the present study, we used 5–6-week-old, weight 
18–22 g, female BALB/c nude mice to research xenograft  
in vivo. OV8-LV-shNC and OV8-LV-shSTK17B cells 
(5×106) were injected into each mouse. Tumor growth was 
detected every 5 days. Subcutaneous tumor weights were 
detected after the mice were killed. Experiments were 
performed under a project license (GB/T 35,892-2018) 
granted by the Ethics Committee of Soochow University, in 
compliance with “Laboratory animal—Guideline for ethical 
review of animal welfare” for the care and use of animals.

Statistical analysis

Every assay was executed in triplicate. T-test or χ2-test 
was used to analyze every experimental assay. P<0.05 was 
considered to be statistically significant. SPSS version 
20.0 (IBM, Armonk, NY, USA) software was used for the 
statistical analyses.

Results

Upregulated expression of STK17B in ovarian cancer

STK17B expression was increased 2.429-folds in the 
carcinoma specimens (P<0.05) (Figure 1A,B). Our findings 
indicated that STK17B could act as the oncogene in ovarian 
cancer.

We searched the STK17B expression using the 
Lu database and The Cancer Genome Atlas (TCGA)  
(Figure 1C,D). STK17B expression was found to be 
increased in ovarian carcinoma.

STK17B acts as the oncogene in ovarian cancer, and 
knockdown of STK17B restrains cell progression

STK17B expression decreased (P<0.01) in SKOV3 and 
decreased (P<0.01) in OV8 (Figure 2A). Knockdown of 
STK17B suppressed cell proliferation in ovarian cancer cells 
(P<0.01) (Figure 2B). EdU-positive cells in the si-STK17B 
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group decreased in SKOV3 (P<0.001) and OV8 (P<0.001) 
(Figure 2C), further demonstrating that STK17B promotes 
cell proliferation in ovarian cell lines.

The relative migration ratio in the si-STK17B group 
decreased (P<0.01, si-STK17B-1 and P<0.05, si-STK17B-2) 
in SKOV3 (Figure 2D). The relative migration ratio in the 
si-STK17B group decreased (P<0.001, si-STK17B-1 and 
P<0.01, si-STK17B-2) in OV8 (Figure 2D). In the transwell 
assay, the relative migration ratio decreased (P<0.001, si-
STK17B-1 and P<0.01, si-STK17B-2) in SKOV3 and 
(P<0.0001, si-STK17B-1 and P<0.001, si-STK17B-2) 
in OV8 (Figure 2E). The relative invasion ratio in the 
si-STK17B group decreased (P<0.001) in SKOV3 and 
(P<0.01, si-STK17B-1 and P<0.001, si-STK17B-2) in OV8  
(Figure 2F), further demonstrating that knockdown of 
STK17B suppressed ovarian cancer cell migration and 
invasion.

Overexpression of STK17B promotes cell progression

STK17B expression was upregulated 4.224-fold (P<0.01) in 
SKOV3 and 5.653-fold (P<0.001) in OV8 (Figure 3A). The 
overexpression of STK17B accelerated cell proliferation in 
ovarian cancer cells (P<0.01) by CCK-8 assay (Figure 3B).

After the transfection of pcDNA3.1-STK17B, EdU-

positive cells increased 3.354-fold in SKOV3 (P<0.001) 
and 2.303-fold in OV8 (P<0.001) (Figure 3C), further 
demonstrating that the overexpression of STK17B 
promoted cell proliferation in ovarian cancer cell lines.

The relative migration ratio in the pcDNA3.1-STK17B 
group was upregulated 2.229-fold in SKOV3 (P<0.001) 
and 2.217-fold in OV8 (P<0.001) by scratch assay, further 
demonstrating that the overexpression STK17B promoted 
ovarian migration (Figure 3D).

The relative migration ratio in the pcDNA3.1-STK17B 
group increased 2.339-fold in SKOV3 (P<0.01) and 2.183-
fold in OV8 (P<0.001) by transwell assay (Figure 3E), 
demonstrating that the overexpression of STK17B 
promoted ovarian migration.

The relative invasion ratio in the pcDNA3.1-STK17B 
group was increased 2.425-fold in SKOV3 (P<0.001) and 
upregulated 2.374-fold in OV8 (P<0.001) by transwell 
assay (Figure 3F), demonstrating that the overexpression of 
STK17B promoted ovarian cancer migration.

STK17B silencing suppresses ovarian cancer cell 
tumorigenicity

Downregulation of STK17B suppressed ovarian cancer 
tumorigenicity in vivo (Figure 4A,B,C,D,E). Tumors 

Figure 1 Expression of STK17B in ovarian cancer. Relative expression patterns of STK17B in ovarian cancer tissues (A) and normal tissues 
(B). Expression characteristics of STK17B was detected in the Lu database (C) and The Cancer Genome Atlas (D). *P<0.05.
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Figure 4 Knockdown of STK17B affects ovarian cancer cells tumorigenicity. Tumors are shown (A). STK17B expression level decreased 
(B). Tumor volume curve (C) and tumor weight were detected (D). Knockdown of STK17B downregulated Ki-67 and STK17B expression 
in vivo (×40) by immunohistochemical analysis. (E). STK17B was involved in epithelial mesenchymal transition. Knockdown of STK17B 
decreased STK17B expression in ovarian cancer cells (F). *P<0.05, **P<0.01.

collected from mice were shown in Figure 4A. Knockdown 
of STK17B was downregulated in vivo (Figure 4B). Tumor 
growth of the LV-NC treatment group was quicker than 
that of the LV-STK17B group (Figure 4C). Tumor weight 
was less in the LV-STK17B group (Figure 4D). STK17B 
downregulation decreased Ki-67 and STK17B expression 
(Figure 4E). These findings demonstrated that STK17B 
promotes ovarian cancer cell tumorigenicity in vivo.

STK17B is involved in the EMT of ovarian cancer

STK17B participated in the EMT of ovarian cancer cells 
(Figure 4F). EMT downstream genes were detect by 
Western blot. STK17B silencing restrained N-cadherin and 
vimentin expression and increased E-cadherin expression 
in ovarian cancer cells; Twist, Slug, and Snail transcription 
factors decreased. These findings indicated that STK17B is 
involved in the EMT of ovarian cancer.
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Discussion

To date, the 5-year survival rate of advanced-stage ovarian 
cancer patients is still only about 40%. Therefore, it is 
important to understand and control proliferation, invasion, 
and metastasis to improve the prognosis and survival rate of 
ovarian cancer patients.

The STK17B gene, also known as DRAK2, belongs to 
the DAPK (death-associated protein kinase) family (19,20). 
STK17B is increased in basal-like and HER2-enriched 
breast cancer, while in a xenograft model, the absence of 
STK17B was found to inhibit tumor development and 
tumor growth (13). STK17B was highly expressed in 
cutaneous T-cell lymphoma (21), and was overexpressed 
in hepatocellular carcinoma (HCC) tissues (22). STK17B 
may promote tumor progression. However, the role of 
STK17B in various tumors is controversial. Some studies 
have found that STK17B could act as a tumor suppressor 
in leukemia and colorectal cancer (10,22), and STK17B has 
been found to play a dual function in tumor progression 
(9,23). The role of STK17B is disease or cell dependent; 
previously published studies have indicated that STK17B is 
upregulated in most HCC tissues and can stimulate HCC 
cell proliferation and metastasis in vivo and in vitro (12,21). 
STK17B could also inhibit the expression of epithelial cells 
by regulating the AKT/GSK-3β/Snail signaling pathway, 
increase the expression of interstitial cells (N-cadherin and 
vimentin), and promote EMT and tumorigenesis (12). It 
has been found that upregulation of STK17B is related to 
clinicopathological characteristics such as tumor size, TNM 
stage, and venous invasion (12). In the present study, we 
studied the role of STK17B and its underlying mechanism 
in ovarian cancer. STK17B expression was found to be 
upregulated in ovarian cancer tissues compared with 
normal ovarian tissue, which indicates that STK17B may 
be involved in cancer procession Our study in functional 
experiments have shown that STK17B silencing suppresses 
ovarian cancer cell proliferation, migration, and invasion, 
and the overexpression of STK17B promotes proliferation, 
migration, and invasion. We observed that STK17B was 
significantly tumorigenic compared with the control 
group in vivo. Therefore, we believe that STK17B acts 
as a significant tumor regulator and potential therapeutic 
target in ovarian cancer. Our results are consistent with the 
differential expression of ovarian cancer in the TCGA.

EMT is critical in the progression of metastasis in 
multiple cancers (24,25); therefore, in the present study, we 
tried to verify whether STK17B participates in the EMT 

of ovarian cancer. In the Western blot results, we found 
that when STK17B was silenced, key proteins in EMT that 
modulates E-cadherin was upregulated and N-cadherin was 
downregulated. The Twist, Slug, and Snail transcription 
factors decreased in EMT. Therefore, we believe that 
STK17B may be involved in the progression of ovarian 
cancer by promoting EMT. However, we need to verify 
EMT signaling pathway in future studies.

Conclusions

STK17B is upregulated and promotes progression 
in ovarian cancer. STK17B may be involved in EMT 
progression in ovarian cancer.
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