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Effects and molecular mechanisms of Achyranthes bidentata 
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Background: Achyranthes bidentata polypeptide k (ABPPk) is an active ingredient separated from the 
Achyranthes bidentata polypeptides (ABPP) in traditional Chinese medicine. In the present study, we 
investigated the promoting effects and molecular mechanisms of ABPPk on the proliferation of Schwann 
cells (SCs).
Methods: Primary SCs were cultured with ABPPk or nerve growth factor (NGF) in vitro, and cell viability, 
cell cycle, EdU assay, and the expressions of proliferating cell nuclear antigen (PCNA) and Ki67 were 
analyzed. In addition, RNA-seq was used for bioinformatics analysis at different time points. PCNA was 
detected at different time points in a rat sciatic nerve injury model to further determining the role of ABPPk 
in sciatic nerve injury repair.
Results: We found that ABPPk could effectively promote the proliferation of SCs, while ABPPk and NGF 
had different molecular mechanisms for their proliferation at different time points. Weighted gene co-
expression network analysis (WGCNA) showed that ABPPk was mainly involved in the positive regulation 
of cell proliferation and epigenetic regulation of cell proliferation, while the main cell proliferation-related 
modules that NGF participated in were attenuation of negative regulation of cell proliferation and positive 
regulation of cell cycle. There were significant differences in the genes involved in different modules between 
the two groups, and ABPPk differed from NGF in the biological process of SC migration, differentiation, 
movement, and development in terms of action time and key genes. Functional enrichment analysis revealed 
ABPPk had more advantages and participation in the axon extension and vascular system areas. Furthermore, 
ABPPk significantly promoted the proliferation of SCs in vivo.
Conclusions: Through in vitro and in vivo studies, we identified the promoting effects of ABPPk on 
the proliferation of SCs. Using high-throughput sequencing technology, our work more comprehensively 
revealed the characteristics and mechanism of ABPPk on SCs. These results further enrich an understanding 
of the positive function and molecular mechanism of ABPPk in peripheral nerve regeneration and are 
conducive to the discovery of new therapeutic targets for peripheral nerve regeneration.
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Introduction

The repair of peripheral never injury is both extremely 
common in clinic and a complicated biological process. 
Due to the slow regeneration of nerves, tissue adhesion and 
muscle atrophy, the functional recovery of damaged nerves 
is always limited. Current research on the regeneration 
of peripheral nerves mainly focuses on the promotion of 
axonal growth and the remodeling of neural function with 
the recovery of anatomical structure (1,2). As an essential 
glial cell in the peripheral nervous system, Schwann cells 
(SCs) play a crucial role in axon regeneration (3-5). After 
peripheral nerve injury, proliferating SCs can secrete a 
variety of neurotrophic factors to promote axon growth 
and myelin sheath formation (3,6). The promotion of SCs 
would greatly benefit the treatment of peripheral nerve 
damage and the improvement of neurological disease, and 
is a hot topic in research on peripheral nerve regeneration 
and repair.

Chinese traditional medicine is an important part of 
the country’s culture, with the advantages of abundant 
resources, affordable prices, and low side effects. Achyranthes 
bidentate is a significant medical plant that can promote 
blood circulation and strengthen muscles and bones, 
which has aroused widespread research interest in the 
medical field (7,8). In recent years, Achyranthes bidentata 
polypeptide k (ABPPk) purified by high-performance 
liquid chromatography (HPLC) from Achyranthes bidentata 
polypeptides (ABPP) has been shown to provide excellent 
protective efficiency to neurons (9), and in our previous 
study, we further explored whether it had a significant effect 
on oxidative damage to SCs. The results showed ABPPk 
could inhibit the apoptosis of SCs, and was closely related 
to the two signal pathways of PI3K/AKT and ERK1/2 (10). 
In view of the important role of SCs in the pathogenesis 
of peripheral nerve disease, their proliferation, migration, 
and apoptosis have been extensively studied, although 
current research is limited to the effects of a few genes or 
microRNAs (miRNAs). There are few studies on certain 
Chinese medicines that can promote the proliferation of 
SCs, and a lack of comprehensive and systematic basic 
research on the entire proliferation process of SCs (11,12). 
Therefore, exploring effective ways to activate and promote 

SC proliferation has important value for the repair of 
peripheral nerve injury, and provides new targets for its 
clinical treatment.

This study investigated whether ABPPk promoted 
SC proliferation and observed it significantly did so 
in vitro and in vivo, indicating significant potential for 
peripheral nerve regeneration and repair. To investigate the 
molecular mechanism of ABPPk on SCs, transcriptomic 
data of ABPPk treated group and nerve growth factor 
(NGF) treated group were analyzed by bioinformatics 
methods. Our work demonstrates the correlation and 
difference of ABPPk and NGF on SCs at the molecular 
regulatory, respectively. These results also contribute to a 
comprehensive and accurate understanding of the molecular 
mechanisms underlying the effect of ABPPk on SCs, which 
may help to explore the therapeutic targets of peripheral 
nerve injury. We present the following article in accordance 
with the ARRIVE reporting checklist (available at https://
dx.doi.org/10.21037/atm-21-5181).

Methods

Ethical statement

This study was performed under a project license (No. 
20190303-15) granted by the Laboratory Animal Ethics 
Committee of Nantong University, in compliance with 
Nantong University institutional guidelines for the care and 
use of animals.

Preparation of ABPPk

The ABPPk used in the experiment was independently 
isolated and extracted as described previously (13). Before 
use, ABPPk was diluted with Dulbecco’s Modified Eagle 
Medium (DMEM) for cell experiments, and with saline for 
in vivo experiments.

Cell treatment

SCs were obtained from the sciatic nerve of Sprague-
Dawley (SD) rats 1 d after birth, and primary cultured  
in vitro. Rats were acquired from the Experimental Animal 
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Center of Nantong University [license No. SCXK (Su) 
2014-0001 and SYXK (Su) 2012-0031, No. 20190225-004]. 
The culture method used has been previously described (14). 
In brief, cells were cultured in DMEM medium (Corning, 
USA) supplemented with 10% of fetal bovine serum (FBS; 
Gibco, Grand Island, NY, USA), then anti-Thy1.1 antibody 
(Sigma, St. Louis, MO, USA) and rabbit complement 
(Invitrogen, Carlsbad, CA, USA) were added to remove 
fibroblasts. Purified SCs were identified by immunostaining 
and plated in 96- or 6-well plates, with the culture medium 
replaced by DMEM medium with 10% of FBS containing 
0.5 μg/mL ABPPk or 0.1 μg/mL NGF, respectively. 
Multiple time points (15 min, 0.5, 1, 2, 3, 6, 12, and 24 h) 
were selected for detection and analysis.

Cell counting kit-8 (CCK-8) assay

Cell proliferation was monitored by the CCK-8 assay (Dojindo, 
Kumamoto, Japan) following the manufacturer’s protocol. 
Briefly, the SCs were plated at a density of 3×103 cells/well on 
96-well plates and subjected to different treatments. Ten μL of 
CCK-8 solution was added and incubated for 2 h at 37 ℃, and 
the absorbance was determined at 450 nm using a Microplate 
reader (Bio-tek Instruments, Inc.).

Cell cycle analysis

Cells were harvested and fixed in ice-cold 70% ethanol 
overnight at 4 ℃. After washing twice with phosphate-
buffered saline (PBS), they were then incubated with 
propidium iodide (PI; Sigma-Aldrich, St. Louis, MO, USA) 
in the dark for 30 min, and analyzed by flow cytometry (BD 
Biosciences, San Jose, CA, USA).

EdU assay

Following designated treatment, the proliferation of 
SCs was quantified by Cell-LightTM EdU DNA Cell 
Proliferation Kit (Ribobio, Guangzhou, China) according 
to the manufacturer’s protocol. Nuclei were counterstained 
using Hoechst 33342, and the percentage of EdU-positive 
cells was captured on a DMR fluorescence microscope 
(Leica Microsystems, Bensheim, Germany). The procedures 
above were conducted in triplicate.

Western blot analysis

Total protein was separated by 10% sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 
and transferred to polyvinylidene fluoride (PVDF) 
membranes (Mill ipore,  Bedford,  MA, USA).  The 
membranes were blocked with 5% nonfat milk for 2 h at 
37 ℃, then incubated with the primary antibodies Rabbit 
anti-proliferating cell nuclear antigen (PCNA; 1:1,000; 
Abcam) and mouse anti-GAPDH (1:5,000; Abcam) at 4 ℃ 
overnight. After washing three times, secondary antibodies 
were incubated for 1 h at room temperature. The Odyssey 
densitometry program (LI-COR, Lincoln, NE, USA) was 
used to detect the signals and GAPDH was used as the 
reference protein.

Immunofluorescence staining

Cells  cultured on covers l ips  were f ixed with 4% 
paraformaldehyde for 30 min at room temperature. After 
washing with PBS twice and blocked for 90 min, they were 
then stained with anti-Ki67 (1:200; Abcam) and anti-S100 
(1:200; Abcam) at 4 ℃ overnight, followed by Goat anti-
Rabbit IgG-Cy3 (1:200; Invitrogen) and Donkey anti-
Mouse IgG-Alex-488 (1:200; Invitrogen). Finally, the cells 
were stained with Hoechst 33342 or DAPI, and analyzed 
with a fluorescence microscopy (AxioImager M2, Zeiss).

RNA-seq analysis

Samples at 15 min, 0.5, 1, 2, 3, 6, 12, and 24 h with 
three duplicates of three different groups (ABPPk, 
NGF and normal SCs) were collected. According to 
the manufacturer’s protocols, the 75 RNA samples were 
extracted, and RNA integrity was determined using the 
Agilent 2100 Bioanalyzer (Agilent Technologies, USA). 
Strand-specific RNA-seq libraries were constructed, 
and the samples were sequenced on the Illumina Hiseq 
X Ten sequencing platform (OEbiotech, Shanghai, 
China). All subsequent analyses were performed using 
clean reads. The sequencing data were uploaded to the 
sequence read archive (SRA) database (accession number: 
PRJNA764187).

Weighted gene co-expression network analysis (WGCNA)

To investigate co-expression gene modules across time 
points in SCs with ABPPk or NGF, we performed WGCNA. 
Power β=7 was selected to calculate an adjacency matrix, 
then an “unsigned” network was inferred in a manner of 
one-step network construction. Expression patterns of genes 
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within given modules were visualized using a pheatmap 
package implemented in R, and functional enrichment 
of genes within a given module was conducted using the 
online DAVID database.

Bioinformatic analysis

In addition to the proliferation of SCs, we also analyzed 
the possible mechanisms of differentially expressed 
genes in the biological processes of SC migration, 
differentiation, movement, and development. Ingenuity 
Pathway Analysis (IPA; Ingenuity System, Redwood City, 
CA, USA) was used to perform bioinformatics analysis. 
Genes with expression changes were uploaded to the IPA 
software and compared and analyzed with those related 
to these functions obtained in IPA. Heatmap analysis data 
that graphically represents values in color were also used. 
The expression values of the differentially expressed genes 
were analyzed for hierarchical clustering. The Search 
Tool for the Retrieval of Interacting Genes (STRING; 
http://string.embl.de/) was used to construct a protein-
protein interaction (PPI) network which was visualized by 
Cytoscape (http://www.cytoscape.org/) (15).

Functional enrichment analysis

The R package clusterProfiler process allows gene 
classification and calculation of enrichment for gene 
ontology (GO) terms (16), and adjusted P<0.05 was 
considered to indicate statistically significant enriched 
function annotations.

Preparation of rat sciatic nerve defect model

The Experimental Animal Center of Nantong University 
provided SD rats weighing 180–200 g, and which lived 
at 24 ℃ and 55%±5% humidity and cycled in light/dark 
for 12 h. After all animals were deeply anesthetized with 
ketamine/xylaxine, the sciatic nerve was dissected carefully, 
and a 3 mm-long-nerve section was crushed three times  
(10 s each time with 10 s interval) with a hemostatic forceps. 
The crush cite was marked with an 8-0 nylon suture, and the 
animals were randomly divided into three groups with six 
rats in each group. The rats were subjected to subepineural 
microinjection at the injury site with ABPPk in 0.5 mg/mL, 
NGF in 0.1 mg/mL, and saline respectively. The tissues of 
the clamped sections were taken for detection on the 1, 4, 
and 7 d after the operation.

Statistical analysis

Results are presented as means ± standard error of the 
mean (SEM) and the statistical significance was conducted 
by Student’s t-tests for comparing two groups or one-
way analysis of variance (ANOVA) for three and more 
comparisons. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Effect of ABPPk on the viability of SCs

Immunocytochemistry with anti-S100 antibody serving as 
SC markers provided evidence of the cell purity (Figure 1A), 
and the CCK-8 method was used to observe the effects of 
ABPPk treatment at different times on SC viability. SCs 
were treated with 0.5 μg/mL ABPPk and 0.1 μg/mL NGF 
for different periods of time, and complete medium (DMEM 
with 10% FBS) was used as the control group. The cell 
viability was tested for different culture times (15 min, 0.5, 
1, 2, 3, 6, 12, and 24 h), and it was found that ABPPk and 
NGF treatment for different times had different degrees of 
effect on the viability of SCs (Figure 1B).

Effect of ABPPk on cell cycle progression of SCs

The cell cycle assay was analyzed by flow cytometry, 
and showed the number of cells in the G1/G0 phase 
was reduced, while that in the S phase was significantly 
increased compared to the control, and was especially 
obvious at 2, 3, 6, and 12 h (Figure 2).

Effect of ABPPk on Edu of SCs

To determine whether ABPPk increased proliferation 
of SCs, we observed cells labeled with EdU under a 
fluorescence microscope. This showed ABPPk significantly 
increased EdU incorporation, and the cell proliferation 
was most obvious at 15 min, 1, 3, 6, and 12 h (P<0.05) 
(Figure 3).

Effect of ABPPk on the expression levels of PCNA and Ki67

We further analyzed cell proliferation markers using 
Western blot and immunocytochemistry, and the results 
showed the expression levels of PCNA were upregulated 
after treatment with ABPPk (Figure 4). In addition, the 
Ki67 staining analysis indicated a higher Ki67 positive cell 

http://www.cytoscape.org/
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Figure 1 Effect of ABPPk on viability of SCs. (A) Fluorescent immunocytochemistry of cultured SCs stained by S100 (green) with nuclei 
counterstained with DAPI (blue). Scale bar =20 μm. (B) SCs were incubated with 0.5 μg/mL ABPPk or 0.1 μg/mL NGF for the indicated 
times (15 min, 0.5, 1, 2, 3, 6, 12, and 24 h), and the viability of SCs was measured by CCK-8 assay. *, P<0.05 vs. the control cells. ABPPk, 
Achyranthes bidentata polypeptide k; SCs, Schwann cells; NGF, nerve growth factor; CCK-8, cell counting kit-8.

proportion at 15 min, 3, 6, and 12 h in the ABPPk group, 
while no significant increase was observed at 0.5, 1, 2, and 
24 h (P<0.05) (Figure 5). Taken together, the results show 
ABPPk can promote the proliferation of SCs.

Identification of hub genes in cell proliferation related 
modules

To overview the expression patterns of DEGs in ABPPk 
and NGF groups, many modules analyzed by WGCNA 
were observed. In the module of positive regulation of cell 
proliferation in the ABPPk group, there were 116 genes,  
wh i ch  were  ma in ly  invo lved  in  p romot ing  ce l l 
proliferation, with the highest expression in the middle 
time period. Another module related to cell proliferation 
in the ABPPk group was the epigenetic regulation of cell 
proliferation, the trend of which was closer to the module 
of positive regulation of cell proliferation. There were also 
modules related to cell proliferation in the NGF group, 

which were the two modules of attenuation of negative 
regulation of cell proliferation and positive regulation of 
cell cycle, with the trends also relatively close (Figure 6). 
There were many genes involved in the four modules, and 
there were significant differences in the genes involved in 
different modules between the group of ABPPk and NGF 
(Figures S1-S4).

Identifying the DEGs of SCs with different functions and 
hub genes from the PPI network in the ABPPk group

The IPA database platform was used to search the biological 
processes of migration, differentiation, movement, and 
development of SCs. The molecular networks at different 
time points were further linked by heatmap to show the 
dynamic changes of molecular regulatory networks of 
different biological functions (Figure 7). The PPI networks 
of hub genes with high connectivity in different functions of 
SCs were screened (Figure S5).
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Figure 2 Effect of ABPPk on cell cycle progression of SCs. The cell cycle analysis of SCs was conducted by flow cytometry. ABPPk 
promotes the proliferation of SCs and transition from G0/G1 to S phase. The distribution of the cell cycle is shown in the graphs. Results 
are expressed as the mean ± SEM, n=5. *, P<0.05 vs. the control cells. ABPPk, Achyranthes bidentata polypeptide k; SCs, Schwann cells; SEM, 
standard error of the mean; NGF, nerve growth factor.
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Figure 3 EdU incorporation reflecting the proliferation of SCs. An EdU cell proliferation assay kit was used to assess proliferation. (A) 
After ABPPk and NGF were treated for different times, SCs were stained with EdU (red) and Hoechst 33342 (blue), and their morphology 
was confirmed by fluorescence microscope. Scale bar =50 μm. (B) The ratio of SCs stained by EdU in each group. Results are expressed as 
the mean ± SEM, n=5. *, P<0.05 vs. the control cells. SCs, Schwann cells; ABPPk, Achyranthes bidentata polypeptide k; NGF, nerve growth 
factor; SEM, standard error of the mean.

Functional enrichment analysis of genes within the ABPPk 
group

In addition to the previously analyzed SC-related 
functions, we conducted an overall analysis of the 
biological functions of all genes at each time point, and 
it was found that the ABPPk group and NGF group still 
had significant differences in the functions involved. 
For the ABPPk group, the most enriched GO terms 
were “response to hypoxia, regulation of axon extension, 
vascular endothelial growth factor production, regulation 
of neuron migration, regulation of tissue remodeling, 
blood vessel lumenization” (Figure 8A), while these were 
not observed in the NGF group. For the NGF group, the 
most enriched GO term was “regulation of myelination, 

axon ensheathment, neurotransmitter receptor metabolic 
process” (Figure 8B), while commonality between the 
ABPPk and NGF groups was seen with “response to ATP, 
regeneration, negative regulation of neuron apoptotic 
process, and cell morphogenesis involved in neuron 
differentiation”.

Effect of ABPPk on the gene expression of SCs proliferation 
in the process of peripheral nerve injury and repair

To observe whether ABPPk had a certain promoting effect 
on SC proliferation during the repair of sciatic nerve 
injury, the proteins extracted from the clamped tissue at 
different time points after the operation were detected by 
Western blot. The results showed that the ABPPk group 
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Figure 4 Effect of ABPPk on the expression levels of PCNA. (A) The protein expression of PCNA was measured by using Western blot in 
SCs after treatment with ABPPk and NGF for different times. (B) Statistical analysis of (A). GAPDH was used as a loading control. Results 
are expressed as the mean ± SEM, n=5. *, P<0.05 vs. the control cells. ABPPk, Achyranthes bidentata polypeptide k; PCNA, proliferating cell 
nuclear antigen; SCs, Schwann cells; NGF, nerve growth factor; SEM, standard error of the mean.

could increase the protein expression of PCNA at 1, 4, and 
especially at 7 d after surgery (Figure 9).

Discussion

The repair of peripheral nerve damage has always been 
a research hotspot in the field of neuroscience. After 

peripheral nerve injury, proliferated SCs migrate along 
the basement membrane to the damaged segment to form 
the Büngner area, and secrete nutritional factors to guide 
the axon to grow distally (17-19). SCs can also promote 
the process of myelination after peripheral nerve injury 
(20,21), which is very important for the timely and accurate 
transmission of information between the brain and body 
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Figure 5 Effect of ABPPk on the expression levels of Ki67. Ki67 staining assay determined the effect of ABPPk and NGF on cell 
proliferation. Ki67 staining indicated a higher Ki67 positive cell proportion in ABPPk or NGF treated cells for different times (15 min, 3, 6, 
and 12 h). Scale bar =50 μm. ABPPk, Achyranthes bidentata polypeptide k; NGF, nerve growth factor.
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parts (22). Therefore, promoting the proliferation of 
SCs contributes to the repair and functional recovery of 
peripheral nerves.

Achyranthes bidentata is a well-known traditional Chinese 
medicine with many functions and effects. In this study, 
we found that ABPPk could significantly promote the 
proliferation of primary SCs cultured in vitro at different 
times, and to analyze this effect in vivo, we constructed a 
sciatic nerve injury model. Western blot analysis showed 
that the proliferation of SCs in the ABPPk and NGF groups 
was significantly increased compared with the normal 
saline group, which further indicated that ABPPk could 
promote the proliferation of SCs. In view of these findings, 
we suspected that the effect of ABPPk on SC proliferation 
was regulated by a complex mechanism and revealed this 
by whole-transcriptome sequencing technology combined 
with bioinformatics analysis of the IPA database and other 
methods. Compared with the NGF group, WGCNA 
analysis showed that ABPPk was mainly involved in the 
positive regulation of cell proliferation and the epigenetic 
regulation module of cell proliferation. The modules and 
genes involved in ABPPk were significantly different from 
those of NGF.

In addition to the advantage of promoting SCs 
proliferation, ABPPk also demonstrated its effect on other 
functions of SCs. IPA analysis and PPI found that ABPPk 
also differed from NGF in the biological processes of SC 
migration, differentiation, movement, and development in 
terms of action time and key genes. To further explore the 
effects of ABPPk and NGF on SCs, functional enrichment 
analysis showed that ABPPk had more participation 
and advantages in axonal extension and vascular system, 
especially in vascular regulation, which was consistent with 
the original Chinese medicine application and previous 
research results. Our research group previously conducted 
a deeper study on the protective effect of ABPPk on 
serum-deprived SCs through high-throughput sequencing 
technology, and found that in ABPPk protected SCs, 
transcription factors were activated earlier and involved in 
vascular related regulation for a longer time and a wider 
range of regulation (23). In addition, combined with the 
WGCNA method to analyze the ABPPk in this study, it is 
found that one of the modules is defense signal, and many 
genes in this module are closely related to hypoxia injury 
protection and promotion of angiogenesis.

Few new plant active peptide drugs have been used in 
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Figure 6 Co-expression modules identified and characterized by WGCNA. The gene expression trend of the different modules of the 
ABPPk group and the NGF group. The red line indicates the average expression value. WGCNA, weighted gene co-expression network 
analysis; ABPPk, Achyranthes bidentata polypeptide k; NGF, nerve growth factor.

the clinical treatment of peripheral nerve injury. According 
to our study, ABPPk can promote SC proliferation early 
and effectively, and efficiently regulate vascular and axonal 
extension, ultimately improve peripheral nerve regeneration 
and quality of life. We also focused on the correlation and 
difference of ABPPk and NGF to verify their different 
molecular mechanisms on SCs, and found that compared 
with existing neurotrophic factors, Achyranthes bidentata 
from plants has sufficient sources and pharmacological  
advantages (24). As for a single component, it should not 
fully represent the role of traditional Chinese medicine, 

which is still quite complicated. Our research can represent 
part of the effects of traditional Chinese medicine, so as to 
provide a target basis for the protective effect of traditional 
Chinese medicine on peripheral nerve injury. In the future, it 
will be more recommended to use Chinese herbal medicine 
Achyranthes bidentata or its active ingredient ABPPk to treat 
patients with peripheral nerve injury. In summary, our work 
helps to enhance the understanding of the function and 
mechanism of ABPPk and provides an experimental and 
theoretical basis for the clinical treatment of peripheral nerve 
injury and the discovery of new therapeutic targets.
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Figure 9 Effect of ABPPk on the protein expression of SC proliferation in the process of peripheral nerve injury and repair. (A) Western 
blot analysis indicated that both ABPPk and NGF could increase the expression of PCNA protein after sciatic nerve injury at different times 
(1, 4, and 7 d). (B) Statistical analysis of (A). GAPDH was used as a loading control. Results are expressed as the mean ± SEM, n=5. *, P<0.05 
vs. the control cells. ABPPk, Achyranthes bidentata polypeptide k; SC, Schwann cell; NGF, nerve growth factor; PCNA, proliferating cell 
nuclear antigen; SEM, standard error of the mean.
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Figure S1 The heatmap of hub genes in the positively regulates cell proliferation module of the ABPPk group identified by WGCNA. 
WGCNA, weighted gene co-expression network analysis; ABPPk, Achyranthes bidentata polypeptide k.

© Annals of Translational Medicine. All rights reserved. https://dx.doi.org/10.21037/atm-21-5181

Supplementary



© Annals of Translational Medicine. All rights reserved. https://dx.doi.org/10.21037/atm-21-5181

Figure S2 The heatmap of hub genes in the epigenetic regulation of cell proliferation module of the ABPPk group identified by WGCNA. 
ABPPk, Achyranthes bidentata polypeptide k; WGCNA, weighted gene co-expression network analysis.
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Figure S3 The heatmap of hub genes in the attenuation of negative regulation of cell proliferation module of the NGF group identified by 
WGCNA. NGF, nerve growth factor; WGCNA, weighted gene co-expression network analysis.
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Figure S4 The heatmap of hub genes in the positive regulation of cell cycle module of the NGF group identified by WGCNA. NGF, nerve 
growth factor; WGCNA, weighted gene co-expression network analysis.
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Figure S5 The PPI networks of hub genes of different functions. (A) The PPI network of the hub genes of SC migration. (B) The PPI 
network of the hub genes of SC differentiation. (C) The PPI network of the hub genes of SC movement. (D) The PPI network of the hub 
genes of SC development. PPI, protein-protein interaction; SC, Schwann cell.
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