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Background: N6-methyladenosine (m6A) is the most frequent internal methylation of eukaryotic RNA 
(ribonucleic acid) transcripts and plays an important function in RNA processing. The current research 
aimed to investigate the role of m6A-STIM2 axis in cholangiocarcinoma (CCA) progression.
Methods: The expression of STIM2 (Stromal Interaction Molecule 2) in CCA was measured using 
quantitative polymerase chain reaction (PCR) and immunohistochemistry (IHC). STIM2 was examined  
in vivo for its effects on the malignant phenotypes of CCA cells. The m6A modification of STIM2 was 
assessed through MeRIP (methylated RNA Immunoprecipitation)-PCR.
Results: Based on the GEPIA (Gene Expression Profiling Interactive Analysis) 2 database findings, a low 
STIM2 mRNA (messenger RNA) level was related to a poor prognosis in individuals with CCA. Quantitative 
PCR and IHC assays indicated decreased protein satin in CCA tissues and were associated with extrahepatic 
metastasis. Vianude mice tail vein injection model indicated that increased STIM2 levels suppressed CCA 
cell metastasis in vivo, while KRT8 (keratin 8) was detected as the direct downstream target of STIM2-
mediated CCA cell metastasis in vivo. Meanwhile, based on SRAMP database and MeRIP assays indicated 
that m6A alteration resulted in abnormal STIM2 expression in CCA via METTL14 and YTHDC2.
Conclusions: Our findings revealed the epi-transcriptomic dysregulation in CCA and metastasis by 
proposing a complicated STIM2-KRT8 regulatory paradigm based on m6A alteration.
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Introduction

Cholangiocarcinoma (CCA) is the second most aggressive 
form of primary liver cancer, with an increasing incidence 
worldwide (1,2). CCA has gradual signs, a high degree of 
malignancy, and a poor prognosis, as several parts of its 
clinical features are identical to those of hepatocellular 
carcinoma (HCCA) (3). Radiation therapy, chemotherapy, 
intervention, surgery, immune targeting, CCA ablation 
treatment, and other multidisciplinary approaches are 
all options for treating CCA (4-7). CCA is generally 
unresponsive to radiotherapy and chemotherapy, and 
consequently has inferior clinical outcomes.

CCA is a highly fatal malignant tumor originating 
from the bile duct epithelium, which is characterized 
by late clinical manifestations and lack of effective 
treatment. Chronic inflammation, including primary 
sclerosing cholangitis, Fasciola hepatica infection and 
hepatolithiasis, is listed as a risk factor, but the cause is 
unclear for most cases of CCA. The latest progress in 
molecular pathogenesis emphasizes the apparent legacy. 
The importance of genetic changes, including promoter 
hypermethylation and histone deacetylation, and genetic 
changes in cholangiocarcinoma (8). N6-methyladenosine 
(m6A) is a common RNA (ribonucleic acid) alteration that 
predictably affects carcinogenesis and tumor growth (9). 
The alteration of m6A RNA is a reversible process that 
is coordinated by methyltransferase (m6A “writers” and 
“readers”) and demethylase (m6A “erasers”) proteins (10-12).  
Recent research indicates that m6A modification may play 
a critical role in various malignant cancers, including CCA 
(13-16). However, the particular chemical mechanism by 
which m6A induces CCA development remains largely 
unknown.

Orai1 are essential primary proteins that are clustered 
and activated by STIM1 (Stromal Interaction Molecule 1)  
and STIM2 (Stromal Interaction Molecule 2). STIM1 
is the direct activator of Orai1, and loss of the protein 
eliminates Orai1 activation, thereby regulating downstream 
Ca2+ (calcium)-dependent cell functions (17). STIM1 
clustering of Orai1 in endoplasmic reticulum (ER)-plasma 
membrane (PM) junctions reinforces the coupling of Orai1-
mediated Ca2+ entry with nuclear factor of activated T 
cells 1 (NFAT1) initiation (18). In contrast, the activation 
of diffusely localized channels in the membrane by the 
cytosolic STIM1 C terminus or SOAR (the STIM1 Orai 
activating region) fragments has been demonstrated in some 
research to cause nuclear translocation of NFAT1 and gene 

expression (17-20). STIM2 is also considered to be a relevant 
participant in pathological conditions associated with aging, 
Alzheimer’s and Huntington’s diseases, autoimmune diseases 
and cancer (21). STIM2 is considered to play a role in tumor 
development control; however, research on this is limited. 
However, the role of STIM2 in CCA regulation remains 
unclear. The purpose of this study was to investigate the 
clinical significance and biological roles of STIM2 in CCA.

We present the following article in accordance with 
the ARRIVE reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-21-6485/rc).

Methods

Samples and cell lines from human origin 

The Eastern Hepatobiliary Surgery Hospital (EHBH) 
used CCA tissues and neighboring normal tissues from 
10 CCA patients undergoing curative surgical resections. 
All procedures performed in this study involving human 
participants were in accordance with the Declaration of 
Helsinki (as revised in 2013). The study was approved 
by Ethics Review Committee of Eastern Hepatobiliary 
Surgery Hospital and all patients provided written 
informed consent. Human CCA cell lines HuCCAT1 
(ATCC, Manassas, USA)were cultured in Roswell Park 
Memorial Institute (RPMI)-1640 medium with 100 g/mL  
streptomycin, 100 U/mL penicillin, and 10% fetal calf 
serum (GE Healthcare, Life Sciences, USA). The third-
party biology services used short tandem repeat (STR) 
analysis to characterize all cell lines (Feiouer Biology Co., 
Ltd., Chengdu, China).

RT and qPCR (reverse transcription-reaction and 
quantitative polymerase chain reaction)

The PrimeScript RT reagent kit (Takara Bio Inc., China) 
produced the first-strand cDNA (complementary DNA). 
To synthesize microRNA (miRNA), the first-strand cDNA 
Poly-A Tailing Kit (Sangon Bio Inc., Shanghai, China) was 
used to reverse-transcribe miRNAs. In a quantitative RT-
PCR, SYBR Premix Ex TaqII (Takara Bio Inc., Dalian, 
China) was utilized (qRT-PCR). The endogenous controls 
for Messenger RNA (mRNA) and miRNAs were β-actin 
and U6, respectively. The relative fold-change of target 
expression was calculated using the comparative 2-ΔΔCt 
technique. Sangon designed and manufactured all of the 
primers (Shanghai, China).

https://atm.amegroups.com/article/view/10.21037/atm-21-6485/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-6485/rc
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Immunohistochemical (IHC) staining 

IHC was performed according to the previously described 
method (22). The evaluation fields were set at 200× 
magnification power for H-score calculations (23). In 
malignant cells, staining concentration was sorted as 0, 1, 2, or 
3, referring to the existence of negative, weak, intermediary, or 
solid brown staining, respectively. All of the cells were counted 
and stained at different intensities to obtain an overall cell 
count. To calculate the average percentage of positive cells, we 
used the formula shown below.

H-score = (% of cells stained at intensity level 1×1) + (% 
of cells stained at intensity level 2×2) + (% of cells stained at 
intensity level 3×3). H-scores of 0–3 were obtained, with 0 
indicating that all cells stained negatively and 3 indicating 
that all cells stained positively.

Establishment of stable cell lines overexpressing STIM2 
and Keratin 8 (KRT8)

Hanbio provided the lentivirus vectors expressing STIM2 
or KRT8 (LV-STIM2 or LV-KRT8) and its control vector 
(LV-NC) (Shanghai, China). CCA cells were infected with 
the lentivirus vector and then treated with puromycin (at a 
2 μg/mL concentration) for 1 week.

In vivo experimentation through metastasis assays

A protocol was prepared before the study without 
registration. Animal experiments were approved by the 
Second Military Medical University’s Institutional Animal 
Care and Use Committee (Shanghai, China), in compliance 
with the Second Military Medical University guidelines for 
the care and use of animals. Four-week-old male BALB/
c mice were purchased from the Second Military Medical 
University Animal Center and maintained in pathogen-free 
conditions with a regular pellet diet and water. Metastatic 
lung and liver models were used as previously described (23).

Methylated RNA immunoprecipitation (MeRIP) PCR

MeRIP-PCR analysis was performed according to a 
previously published technique (24). 

Statistical analysis

The mean± standard error of the mean (SEM) were used 
to present the data. All data were obtained from three 

independent experiments. GraphPad Prism v.8 (San Diego, 
USA) and SPSS v.25.0 (Chicago, USA) software were used 
for all statistical analyses. Survival curves were calculated 
using the Kaplan-Meier method, and the differences 
were determined using the log-rank test. Univariate and 
multivariate Cox proportional hazards regression models 
were used to examine the independent components. P 
values less than *0.05, **0.01, and ***0.001 were deemed 
statistically significant.

Results

STIM2 deficiency in CCA tissues is related to a poor 
prognosis and extrahepatic metastases 

According to the GEPIA(Gene Expression Profiling 
Interactive Analysis) 2 database, patients with CCA who 
had lower levels of STIM2 had a worse overall prognosis 
and were more likely to die from the condition (Figure 1A).  
STIM2 mRNA expression was significantly lower in 
10 matched CCA tissues compared to adjacent normal 
tissues by quantitative PCR (qPCR). Notably, the CCA 
that metastasized extra hepatically had the lowest STIM2 
mRNA expression (Figure 1B). Meanwhile, IHC revealed 
that STIM2 protein levels were commensurate with the 
trend in mRNA levels (Figure 1C,1D). Collectively, these 
findings suggested that STIM2 may be involved in the 
evolution of CCA and may serve as a possible prognostic 
indicator for patients with CCA.

Inhibition of tumor metastasis by STIM2 in vivo

The mRNA level of STIM2 was then studied in three 
CCA cell lines, with RBE exhibiting relatively lower 
STIM2 expression, while HUCCAT1 and Huh28 exhibited 
markedly higher STIM2 expression (Figure 2A). To 
investigate the role of STIM2 in preventing CCA cell 
metastasis, RBE cells were infected with LV-STIM2 or 
LV-NC (Figure 2B), and the effects of STIM2 on tumor 
metastasis were examined in vivo. To create the liver 
orthotopic-implanted models, cells were infected with LV-
STIM2 or LV-NC and transplanted into the livers of nude 
mice. Six weeks after transplantation, the fluorescence 
signal intensities of metastatic liver nodules in the LV-
STIM2 group were significantly lower than those in the 
LV-NC group (Figure 2C). There were significantly fewer 
metastatic foci found in liver tissue slices from patients who 
had been treated with LV-STIM2 (Figure 2D,2E), indicating 
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Figure 1 Decreased STIM2 in CCA tissues is associated with poor prognosis and extrahepatic metastasis. (A) STIM2 expression and 
overall survival or disease-free survival in CCA patients were compared using Kaplan-Meier survival analysis. A median expression level 
from the GEPIA 2 database served as the cutoff point. (B) The mRNA expression levels of STIM2 were examined in 10 paired CCAs 
(with or without extrahepatic metastases) and neighboring normal tissues. (C) IHC pictures showing STIM2 staining in the CCA tumor or 
surrounding tissues (magnification ×200). (D) H-score from (C). ± SD. *, P<0.05 indicated statistical significance. CCA, cholangiocarcinoma; 
STIM2, Stromal Interaction Molecule 2; GEPIA 2, Gene Expression Profiling Interactive Analysis; mRNA, messenger RNA; IHC, 
immunohistochemical; SD, standard deviation.

that STIM2 inhibited the ability of CCA cells to spread 
intra-hepatically. Using nude mice as a model for lung 
metastasis, we injected cells labeled with firefly luciferase 
into their tail veins. Compared to the LV-NC group, the 
LV-STIM2 group had significantly lower bioluminescence 
signal intensities in mice, substantially lower fluorescence 
signal intensities of metastatic lung nodules (Figure 2F),  
and fewer metastat ic  foci  in lung t issue sect ions  
(Figure 2G,2H), indicating that STIM2 can inhibit 
hepatoma cells’ metastatic lung potential.

STIM2 inhibits tumor metastasis by decreasing KRT8 
levels in vivo

Next, we explored the targeted gene of STIM2 inhibition of 
tumor metastasis in vivo. The UALCAN database (https://
ualcan.path.uab.edu/) showed that the top five genes (KRT18, 
KRT8, MPST, MRPS17, and C20orf24) were negatively 
correlated with STIM2 in CCA (Figure 3A). We observed 
that LV-STIM2 lowered KRT8 mRNA expression in CCA 
cells, indicating that STIM2 may regulate KRT8 expression 

https://ualcan.path.uab.edu/
https://ualcan.path.uab.edu/
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Figure 2 STIM2 inhibits tumor metastasis in vivo. (A) qRT-PCR was used to verify the mRNA levels of STIM2 in three CCA cells. (B) RBE 
cells overexpressed STIM2. qRT-PCR was used to verify the efficacy of the overexpression. (C) Photographs of the intrahepatic metastases 
taken in bioluminescence. (D) Sample microscopic pictures of metastatic lung foci stained with HE to show the indicated CCA cells in liver 
tissue from which to extrapolate, magnification ×50. (E) Quantitative findings from (D). (F) The IVIS@ Lumina II imaging system (Caliper 
Life Sciences, Hopkinton, MA, USA) captured bioluminescence images of the mouse tail vein and injection metastasis lung models at 
specific periods. (G) A microscopic picture of pulmonary metastatic foci identified CCA cells in pulmonary tissue sections stained with HE, 
magnification ×50. (H) Quantitative statistics from (G). *, P<0.05. qRT-PCR, quantitative reverse transcription-polymerase chain reaction; 
CCA, cholangiocarcinoma; STIM2, Stromal Interaction Molecule 2; HE, hematoxylin-eosin.

in CCA cells (Figure 3B). As a result, we are curious as to 
whether STIM2 inhibits tumor metastasis via decreased 
KRT8 levels. SK-Hep1 cells transfected with LV-STIM2 
or LV-NC were infected in vitro with LV-KRT8 or LV-N, 

respectively (Figure 3C). LV-STIM2 decreased the capacity 
of CCA to metastasize in orthotopic implanted and lung 
metastasis models. Simultaneously, LV-KRT8 restored 
the inhibitory effect of STIM2 on CCA cell metastasis  
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Figure 3 STIM2 inhibits tumor metastasis by decreasing KRT8 levels in vivo. (A) Five top genes (KRT18, KRT8, MPST, MRPS17, and 
C20orf24) negatively correlated with STIM2 in CCA based on the UALCAN database (https://ualcan.path.uab.edu/). (B) The mRNA 
level of KRT8 in CCA with LV-NC or LC-STIM2 was validated using qRT-PCR. (C) KRT8 was overexpressed in CCA cells with LV-
NC or LV-STIM2. The overexpression efficiency was validated using qRT-PCR. (D) Representative bioluminescence photographs of the 
intrahepatic metastases. (E) Microscopic representations of pulmonary metastatic foci in liver tissue slices stained with HE identified CCA 
cells, magnification ×50. (F) Statistics derived from (E). (G) The IVIS@ Lumina II imaging system captured bioluminescence images of 
the mouse tail vein and injection lung metastasis models at specific times. (H) Representative microscopic pictures of pulmonary metastatic 
foci from indicated CCA cells were obtained through HE staining, magnification ×50. (I) Quantitative statistics from (H). *, P<0.05. CCA, 
cholangiocarcinoma; STIM2, Stromal Interaction Molecule 2.
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in vivo (Figure 3D-3I), demonstrating that STIM2 suppresses 
tumor metastasis in vivo by lowering KRT8 levels.

Abnormal STIM2 levels in CCA are responsible for m6A 
methylation modification

Through GEPIA 2 analysis, we observed the relationship 

between STIM2 and the expression of methylase  
METTL3, METTL14, WTAP, and KIAA1429, as well as 
demethylase ALKBH5 and FTO. In the CCA, we detected 
that STIM2 was related toMETTL14 and YTHDC2 
(Figure 4A). Meanwhile, Figure 4B shows that STIM2 
mRNA had three very confident m6A sites, indicating 
that m6A modification may be related to aberrant STIM2 

https://ualcan.path.uab.edu/
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Figure 4 Abnormal STIM2 levels in CCA are responsible for m6A methylation modification. (A) Expression correlation with methylase 
(METTL3, METTL14, WTAP, and KIAA1429), demethylase (ALKBH5 and FTO), and readers (YTHDC1-2 and YTHDF1-3) in CCA based 
on the GEPIA database. (B) The m6A site of STIM2 mRNA was predicted by the SRAMP database. (C) m6A-site level STIM2 in CCA 
cells were obtained by MeRIP-qPCR. (D) m6A STIM2 levels in 10 paired primary CCA were obtained by MeRIP-qPCR. *, P<0.05. CCA, 
cholangiocarcinoma; STIM2, Stromal Interaction Molecule 2.

levels in CCA, as demonstrated by the SRAMP (sequence-
based RNA adenosine methylation site predictor) database 
(https://www.cuilab.cn/sramp). Further research using 
a RIP (RNA immunoprecipitation) assay confirmed the 

presence of the m6A-3-site in STIM2 mRNA (Figure 4C). 
In the clinic, MeRIP-qPCR results showed that in 10 paired 
CCA patients, the m6A CPEB1 level was lower in the 
tumors than the surrounding normal tissues (Figure 4D). 

https://www.cuilab.cn/sramp


Chen et al. m6A-STIM2 role in CCA metastasisPage 8 of 10

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(2):40 | https://dx.doi.org/10.21037/atm-21-6485

According to the above findings, aberrant STIM2 levels in 
CCA are caused by m6A alteration.

Discussion

CCA, which develops from epithelial cells confronting the 
biliary tree lumen, is the second most common primary 
hepatic tumor worldwide after HCCA (25). As a result 
of the lack of early recognized clinical symptoms and the 
unavailability of precise tumor biomarkers, CCA is typically 
detected at an advanced, incurable stage (26). Despite 
recent advances in the development of molecularly targeted 
medicines, the outlook for this lethal malignancy remains 
bleak. As a result, there is a high priority in unraveling the 
molecular mechanisms and pathways underlying this disease 
to improve the clinical outcomes of CCA patients. STIM2 
is the primary protein involved in Orai1 clustering and 
activation (27). 

There is little known regarding the involvement of 
STIM2 in the advancement of CCA. Based on the GEPIA 
2 database, this study discovered that low STIM2 mRNA 
levels were related to poor survival in CCA patients. 
Quantitative PCR and IHC studies revealed a decrease 
in the protein expression in CCA tissues was linked to 
extrahepatic metastasis. Increased STIM2 levels inhibited 
CCA cell metastasis in vivo, confirming the inhibitory effect 
of STIM2 on the tumorigenesis and metastasis of CCA.

Our mechanistic investigation revealed that the STIM2-
KRT8 axis is critical in CCA metastasis. KRT8 (keratin 8) is 
an epithelial marker and one of the most important keratin 
proteins (28). KRT8 and its filament partner, KRT18, 
have been found to control the cellular response to stress 
stimuli and contribute to cell resistance to apoptosis, in 
addition to maintaining cell mechanical integrity (29). 
Recent investigations showed that KRT8 levels were 
higher in the aqueous humor of patients with age-related 
macular degeneration (AMD) (30). In vitro studies have also 
indicated that high KRT8 levels could protect RPE cells 
from deterioration under oxidative stress (31). KRT8 has 
been demonstrated to be important in a variety of malignant 
tumors (32-34). However, the molecular mechanism of 
KRT8 in the pathogenesis of CCA remains unknown. In 
this study, the GEPIA database and qRT-PCR were used 
to determine the changed expression of the KRT8 mRNA 
levels controlled by STIM2. According to functional 
studies, STIM2 suppresses tumor metastasis in vivo by 
reducing KRT8 levels. In future research, we will explore 
the unique regulatory mechanism of m6A-induced STIM2 

abnormalities in CCA.
A recent study revealed that m6A mRNA modification 

is critical for RNA fate, including splicing, localization, 
translation, transport, and mRNA stability (35). A 
multicomponent complex composed of  METTL3 , 
METTL14, and WTAP mediates adenosine N6 methylation 
in mammals (36). To date, FTO and ALKBH5 have been 
shown to influence m6A demethylation (37). m6A has been 
shown to interact with the targeted mRNA or miRNA and 
contribute to the progression of various types of cancer (9).  
In recent years, emerging studies have suggested that 
m6A-related genes have crucial roles in the initiation and 
progression of cancers, including acute myeloid leukaemia, 
renal cell carcinoma, and hepatocellular carcinoma etc. (24). 
Several m6A regulator abnormal expressed is closely related 
to the poor prognosis of tumor patients including CCA (38).  
Recently study identified PD-L1 mRNA as a target of 
ALKBH5 and reveals a role for ALKBH5 in regulating the 
tumor immune microenvironment and immunotherapy 
efficacy in CCA (39). However, research on the m6A 
alteration of STIM2 in CCA is lacking. In the present study, 
the SRAMP database and MeRIP-seq (sequencing) were 
used to determine the altered expression of STIM2 mRNA 
transcripts controlled by m6A alteration. In this study, we 
found that the m6A/IGF2BP2 axis functioned in enhancing 
CCA metastasis, suggesting that it might be a new target for 
CCA diagnosis and treatment. Finally, as previously stated, 
this was the first time that STIM2 was identified as a direct 
target of m6A-mediated transformation. The particular 
regulatory mechanism through which m6A induces STIM2 
abnormality in CCA remains an open question for further 
research.

Conclusions

Finally, our findings have provided new insight into 
the critical involvement of the m6A-STIM2 axis in the 
progression of CCA metastasis. The current results 
highlighted the importance of the molecular process of m6A 
epi-transcriptomic alteration in cancer research, which was 
previously undiscovered.
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