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Introduction

Hearing mechanism and hearing loss

Auditory perception is how the ear transduces sound waves 
(vibration) into neural signals. Sound waves enter the outer 
ear and travel through the middle ear until reaching the 
inner ear, where hair cells convert the vibration information 

into neural signals. These signals ultimately reach the 
auditory cortex for perception (1). The complete auditory 
system consists of the peripheral and central auditory 
nervous systems, which is the basis for sound perception. 
The peripheral auditory system comprises the outer, 
middle, and inner ear. The outer ear comprises the pinna, 
ear canal, and tympanic membrane.
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Moreover, the tympanic membrane separates the external 
ear canal from the middle ear. The middle ear includes the 
ossicular chain, tympanic cavity, and eustachian tube. The 
ossicular chain, which includes three ossicles (malleus, incus, 
and stapes), transmits the sound-induced vibrations of the 
tympanic membrane to the inner ear. The bony labyrinth 
in the inner ear mainly consists of the vestibule, three 
semicircular canals, and the coiled cochlea, which is filled 
with fluid (perilymph and endolymph). The movement of 
the stapes against the oval window (OW) creates waves in 
the cochlear fluid, which causes the basilar membrane (BM) 
to vibrate. The BM vibrations in turn produce motion in 
the sensory hair cells located in the organ of Corti, thereby 
stimulating nerve impulses for additional perception in the 
central auditory nervous system (2).

The central auditory nervous system spans the cerebral 
cortex of the brainstem, midbrain, and thalamus and is 
one of the most extensive central pathways in the sensory 
system. In the central auditory pathway, multiple parallel 
and overlapping pathways diverge and converge to deliver 
and analyze different information (3). The ascending 
auditory pathways achieve advanced processes by passing 
information to the auditory cortex, which generates 
conscious perception. In contrast, most of the information 

carried by the auditory descending pathways is inhibitory. 
As shown in Figure 1, the entire process of hearing basically 
involves sound waves traveling through the ear, which 
eventually reach the central auditory nervous system for 
perception via some nerve fibers.

Any damage to the auditory system will result in hearing 
loss. For instance, damage to the ossicular chain interrupts 
vibration transmission and causes insufficient inner ear 
stimulation, which manifests as conductive deafness (4). 
Lesions in the cochlea or auditory central nervous systems 
present as sensorineural deafness with impaired sound 
perception. Mixed deafness occurs when two or more 
malfunctions coincide (5,6).

Auditory prostheses are devices that are implanted at 
lesion locations to restore hearing. For example, a middle 
ear implant (MEI) can be used for an individual with a 
middle ear disease coupled with ossicular chain damage (7) 
to reconstruct and repair functionality. A cochlear implant 
(CI) bypasses the damaged hair cells of the inner ear through 
direct electrical stimulation of the auditory nerves (8). If the 
lesion exists in the pathway from the cochlea to the auditory 
cortex, an auditory brainstem implant (ABI) and auditory 
midbrain implant (AMI) are considered (5,9-11). The ABI 
stimulates the cochlear nucleus in the brainstem, bypassing 
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Figure 1 The whole hearing process from the peripheral auditory system to the central auditory nervous system, together with the internal 
part of typical auditory prostheses, including the MEI, attached to the ossicular chain; the CI, the most widely used inner ear implant; and 
the ABI and AMI, stimulating the auditory center. ABI, auditory brainstem implant; AMI, auditory midbrain implant; CI, cochlear implant; 
MEI, middle ear implant; OW, oval window; RW, round window.

https://www.verywellhealth.com/ossicles-anatomy-5092318
https://www.verywellhealth.com/malleus-anatomy-5095984
https://www.verywellhealth.com/incus-anatomy-5097421
https://www.verywellhealth.com/stapes-anatomy-5092604
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the auditory nerve, while an AMI stimulates the inferior 
colliculus. Furthermore, the CI, ABI, and AMI are electrode 
arrays of different sizes; CIs and AMIs are linear arrays, 
while the ABI is a two-dimensional (2D) array. Some typical 
auditory prostheses are shown in Figure 1, based on lesion 
locations.

Auditory prostheses design and optimization methods

There are some limitations to auditory prostheses after 
implantation. For example, long-term studies have 
demonstrated that dislocations and extrusions frequently 
appear after middle ear surgery (12), and residual hearing 
loss is severe after CI surgery (13,14). Many studies were 
devoted to optimizing middle ear prostheses. Common 
optimization parameters include the size, mass, and implant 
location of the implanted part (15-17). For inner ear 
prostheses, many parameters need to be optimized, such as 
the electrode length, electrodeposition, and coding strategy 
of CI (18-20).

Numerous designs and evaluation methods have 
been developed to optimize auditory prostheses, such as 
experiments on human temporal bones of cadavers (21-23),  
animals (24,25), and clinical volunteers (26). Animal and 
cadaveric experiments have determined parameters that 
influence hearing performance. However, it is challenging 
to conduct multiple experiments or optimize prostheses 
on specimens after implantation. Furthermore, animal 
and cadaveric experiments also require high-precision and 
complex instruments, such as laser Doppler vibrometry or 
phase Doppler interferometry, which are time-consuming 
and expensive. For instance, cadaveric experiments have 
been conducted on fresh human temporal bones by 
measuring tiny vibration stapes displacement with laser 
Doppler vibrometry to determine the effects of transducers 
on MEIs (27). Therefore, a convenient, low-cost, and 
repeatable method for prosthesis design and optimization 
is desirable. The finite element method (FEM) can meet 
these requirements and is carried out on the computer with 
substantial flexibility in terms of modifying different settings, 
such as the electrode shape and material.

Purpose and scope of the review

Some parameters of the auditory prosthesis, such as mass, 
implanted position, and degree, need to be repeatedly 
designed and optimized based on the realistic geometry 
of the ear. With the development of imaging and micro-

measurement technologies, it has become possible to 
establish an accurate three-dimensional (3D) finite element 
(FE) model of the ear and the auditory prosthesis. Based 
on this 3D-FE model, the implanted components of the 
auditory prosthesis can be analyzed. This paper reviews the 
recent advances in the design and optimization of auditory 
prostheses using the FEM and provides suggestions for 
future development. We present the following article 
in accordance with the Narrative Review reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-2792/rc).

Methods

We searched PubMed and Web of Science for original 
research and review articles through 2022. Research terms 
include various combinations of “finite element method”, 
“ear”, “middle ear”, “inner ear”, “auditory prosthesis”, 
“cochlear implant”, “middle ear implant”, “hearing loss”. 
The literature on the design of auditory prostheses using 
the FEM has been extensively studied, including different 
types of ear models, relevant parameters of different 
auditory prostheses that need to be designed and optimized. 
Table 1 describes the study sequence and details.

FE models of the ear 

In mathematics, the FEM is a numerical technique for 
solving approximate solutions to boundary value problems 
of partial differential equations. The FEM is analogous 
to the idea of connecting multiple tiny straight lines to 
approximate a circle. It regards the solution domain as 
consisting of many small interconnected sub-domains called 
FEs and assumes a suitable approximate solution to each 
element. The FEM in turn deduces and solves the general 
satisfaction conditions (such as the equilibrium conditions of 
the structure) to obtain the solution to the whole problem. 
It has high calculation accuracy and can be adapted to 
various complex shapes, making it an effective engineering 
analytical method for simulating physical systems.

The FEM can predict responses such as displacements, 
pressures, or voltage distribution in the complex auditory 
system (28). The FE model generally includes constructing 
geometry, meshing division, material property assignment, 
and boundary condition settings. FEM mesh is obtained 
by dividing a geometric model into many small units or 
elements. For 3D subjects, tetrahedra, hexahedra, and 
a combination are usually applied. There are numerous 

https://atm.amegroups.com/article/view/10.21037/atm-22-2792/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-2792/rc
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Table 1 The search strategy summary

Items Specification

Date of search (specified to date, month and year) 2021-6-30 to 2022-01-03

Databases and other sources searched PubMed and Web of Science

Search terms used (including MeSH and free text search 
terms and filters)*

“Finite element method”, “ear”, “middle ear”, “inner ear”, “auditory 
prosthesis”, “cochlear implant”, “middle ear implant”, “hearing loss”

Timeframe 1989-10-01 to 2021-12-02

Inclusion and exclusion criteria (study type, language 
restrictions, etc.)

Inclusion criteria: all references were found in PubMed and Web of Science 
and written in English

Selection process (who conducted the selection, whether 
it was conducted independently, how consensus was 
obtained, etc.)

Q Cheng, H Yu, Y Bai, G Ni collected and assembled the data. Then Q 
Cheng, H Yu, J Liu, Q Zheng conducted the classification and analysis of 
the information. Finally, all authors reached an agreement on the manuscript

Any additional considerations, if applicable None

*, an independent supplement table (Table S1) to present detailed search strategy from PubMed as an example.

element types for researchers to select according to the 
research objective. For example, the mechanical element is 
needed to investigate the vibration of the ear, and electrical 
elements will be required when analyzing potential 
distribution in the cochlea. Assigning material properties, 
such as Young’s modulus or resistivity, is similar to element 
selection, depending on the analysis type. Different 
materials determine the different parameters of constitutive 
equations and can be used to calculate various results, 

such as mechanical displacement or voltage. The FEM 
has an apparent advantage in modeling biological systems 
with complicated structures, which are difficult for other 
methods such as the lumped parameters method (29,30).

Overall, the FE model can determine detailed responses 
at a target position of the simulated system. Compared 
with animal and clinical experiments, the geometry and 
material properties can be modified according to the design 
objective to facilitate repeated numerical experiments 
without equipment limitations. For example, a prosthesis 
can be integrated into some locations of an ear model to 
elicit mechanical or electrical responses, which can be used 
to find better implanted position by evaluating hearing 
responses (31,32).

Middle ear model

The middle ear model has been developed by including only 
a single tympanic membrane in a model and then gradually 
enriched to include the tympanic membrane, ossicular 
chain, and middle-ear cavity. The components of this model 
have become more abundant and detailed, including some 
soft tissues (33,34) and the external auditory canal (35-37), 
as shown in Figure 2.

The geometry data for constructing models are often 
measured using a light microscope from the temporal 
bone sections at different angles with a rough spatial 
orientation. Laser scanning microscopy, with its higher 
resolution, can provide a more accurate geometry and has 
been used to measure the eardrum and ossicular chain. 

SML/SIL

Lateral

Anterior
Inferior

LML

TM

MM

Stapes

PIL

Incus

CT

Figure 2 A 3D model of the middle ear. There are some soft tissues 
in the middle ear, including the MM, CT, LML, PIL, SIL, SML, 
and TM (38). Reused the figure with permission (Halm et al.,  
J Otolaryngol Head Neck Surg 2021;50:33, http://creativecommons.
org/licenses/by/4.0/). 3D, three-dimensional. CT, chorda tympani; 
LML, lateral malleal ligament; MM, manubrium of the malleus; 
PIL, posterior incudal ligament; SIL, superior incudal ligament; 
SML, superior malleal ligament; TM, tympanic membrane.

https://cdn.amegroups.cn/static/public/ATM-22-2792-Supplementary.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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However, most measurements used to estimate the whole 
spatial locations of the middle ear are based on different 
specimens, resulting in some deviations (39). Another 
method that combines temporal bone histologic sections 
with computer-integrated 3D geometric reconstruction 
can improve the spatial accuracy of the ear model, such 
as the spatial location between three ossicles from the 
same specimen (40). In contrast, radiation-based imaging 
methods, magnetic resonance imaging, and computed 
tomography imaging are non-invasive and more suitable 
for living animals or human subjects. So that data for 
building ear models can be acquired clinically using 
imaging methods (41-44). 

Inner ear model

The inner ear model often refers to the cochlear model, 
which can be simplified into two types: the box model 
and the spiral model. In the box model, the cochlea is 
straightened and includes the upper and lower cavities 
(scala vestibuli and scala tympani) separated by the BM. 
The arrangement of the spiral model is similar to the box 
model, but the geometry incorporates cochlea coiling 
(45,46). 

Mechanical responses, such as the BM response, OW 
and round window (RW) volume velocity, and cochlear 
fluid pressure, can evaluate the inner ear performance. In 
addition to studying the mechanical response of the cochlea, 
some researchers have established volume conduction 
models to explore the electrical response of the cochlea 
(31,47-50). The volume conduction model differs from the 
mechanical model as it uses electrical characteristics, such 
as resistivity, to simulate each part of the ear (51). In this 
case, the inner ear model can calculate the electric field, 
current threshold, and local potential. In addition to these 
simplified models, more accurate and detailed structures 
of inner ear models have been developed, including the 
scalae (52,53), the organ of Corti (54,55), and coiling (56). 
Some studies also included auditory nerve fibers, which are 
located in the cochlear modiolus, to study neural response. 
Specifically, nerve fibers’ shape and starting position were 
simplified and then drawn along the cochlear modiolus to 
be integrated with the cochlear model. The neural response 
can then be presented as the potential distribution of the 
nerve fibers when conducting electrical analysis on the 
cochlea (57,58). However, a more complex model does not 
always provide a more accurate simulation; an appropriate 
model with relevant details should be constructed according 

to the research objective.

Whole ear model

Some studies of the inner ear model have applied mechanical 
stimulation on the OW to study the cochlear response 
(46,59). In some middle ear models, the cochlea was assumed 
as a mass, and stimulation was applied to the eardrum to 
study the middle ear transfer function (40,60-62). Other 
research has combined middle and inner ear models to study 
the responses during sound transmission by driving the 
tympanic membrane (63,64). The stimuli received by these 
partial models always estimate the external sounds and lack 
detailed interactions between the different structures from 
the outer ear to the inner ear. The ear canal and middle 
cavity are full of air, whereas the cochlea contains fluid, 
which increases the complexity of the sound transmission 
process. The whole ear model, which typically includes the 
ear canal, middle ear, and inner ear, can simulate a detailed 
sound transmission process and conduct investigations 
involving acoustic-structure-fluid coupling (28). Brown et al.  
studied blast wave transmission from the ear canal to the 
cochlea using a whole ear model and found that the organ of 
Corti might suffer substantial damage during blast exposure, 
reflecting the potential auditory injury (65). Although the 
whole ear model has some advantages, conducting an entire 
ear study in all ear-related research is unnecessary.

Models for auditory prostheses design and 
optimization

Models for middle ear prostheses

MEIs can be classified as wither passive or active. A passive 
MEI is used to reconstruct discontinuous or fixed ossicular 
chains without strengthening sound waves (66). Partial 
ossicular replacement prostheses (PORP), total ossicular 
replacement prostheses (TORP), and stapes prostheses are 
usually passive MEIs. On the other hand, an active MEI 
enhances sound waves through an external device before 
directly stimulating the middle ear components (67).

PORP and TORP
Middle ear prostheses affect the hearing response and thus 
auditory performance by changing the natural frequency 
of the ossicular chain (33). The PORP mainly connects the 
tympanic membrane or malleus handle to the stapes head, 
while the TORP links the tympanic membrane or malleus 
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handle and the stapes footplate. The TORP can be used 
for reconstruction if the stapes arch is damaged or severely 
defective (12). Figure 3 displays situations when an ossicular 
replacement prosthesis is implanted into the middle ear.

In many studies using the FEM to design and optimize 
ossicular replacement prostheses, the ossicle replacement 
prosthesis-induced vibration response of the stapedial footplate 
or tympanic membrane is regarded as a standard for evaluating 
the hearing performance of the prosthesis (68). Studies have 
found that some factors of the prosthesis, such as the geometry, 
implanting location, materials, and other parameters, are 
crucial to the performance of the prosthesis (15).

Specifically, an increase or decrease in the stiffness of 
the MEI affects the vibration amplitude (resonance/anti-
resonance peak) of the stapes, too high stiffness of ossicular 
replacement prostheses will cause excessive stresses of the 
OW, too low stiffness will cause overlarge movement of 
resonance peak (34). Therefore, the stiffness of the MEI 
should match the natural frequency of the ossicular system, 
which may also help to explain the difference in the clinical 
manifestations of ossicular replacement surgery. The weight 
and implanted position of the prosthesis also influence 
the hearing response. The high stiffness and lightweight 
improve the efficiency of the incus replacement prosthesis. 
A PORP, located between the stapes head and the malleus 

manubrium or near the center of the tympanic membrane 
can induce a more significant stapes displacement, indicating 
better performance (69). Among three different contact 
positions (anterior, center, and posterior) of stapes footplate 
for a TORP, the footplate center achieved the best hearing 
recovery performance, providing a theoretical reference 
for selecting implant sites by surgeons (70). Therefore, the 
stiffness, mass, contact position, and interactions should be 
considered optimization factors during prosthesis design.

Stapes prosthesis
In addition to PORP and TORP, stapes prostheses have 
also been widely used. The only clinically available device 
is the piston prosthesis, which is commonly used in patients 
with conductive or mixed hearing loss due to stapes  
otosclerosis (71). This prosthesis consists of a cylindrical 
piston and an attachment, and the latter generally uses a 
wire or ribbon to crimp around the rest ossicles. Three 
types of stapes prostheses are presented in Figure 4. Previous 
studies have shown that the parameters of the piston stapes 
prostheses, including the attachment condition, contacting 
area, and implanted depth, can significantly influence the 
performance of the prosthesis after implantation (73-75).

The crimping connection represents the contact status 
between the attachment and the ossicles. Some studies 

Malleus
Incus
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TORP
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Tympanic
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Figure 3 Simplified schematic drawing of several situations when ossicular replacement prostheses are implanted into the middle ear. (A) 
The complete auditory ossicular chain and eardrum. (B) Partial and total ossicular replacement prostheses. The partial ossicular replacement 
prosthesis connects the tympanic membrane (C) or the malleus handle and the stapes head (D). The total ossicular replacement prosthesis 
connects the tympanic membrane (E) or the malleus handle and the stapes footplate (F). PORP, partial ossicular replacement prostheses; 
TORP, total ossicular replacement prostheses.
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on temporal bones have shown that crimping conditions 
(without crimping, loose crimping, tight crimping) affect 
hearing reconstruction (76). Williams et al. designed two 
different stapes replacement prostheses with different 
tightness between ossicular chains (77). Joint flexibility was 
changed by setting different boundary conditions and the 
number of joint connections. The results showed that the 
tightness of the prosthesis in the rest ossicular chain was an 
essential factor for the reconstruction of natural frequency 
and vibration mode.

The contact area is also a crucial parameter for optimizing 
stapes prostheses. Böhnke and Arnold designed two 
cylindrical stapes prostheses with different cylinder cross-
sectional areas and implanted them into a spiral cochlear 
model. They found that the BM displacement peak was 
increased by enlarging the stapes prosthesis area, as the pure-
tone threshold level decreased with a growing prosthesis 
area (78). Similarly, Kwacz et al. demonstrated that a more 
extensive area had a better hearing performance based on a 
box model of the cochlea (79). Consistent results have also 
been demonstrated in numerous clinical trials (16,17). Some 
detailed parameters, such as implanted depth that has been 
found clinically, also need to be optimized for specific stapes 
prostheses with the FEM (72).

Active MEI
Compared with the passive MEIs mentioned above, 
active MEIs, such as Vibrant Soundbridge (80), are more 
successful in the clinic. Active MEIs can be divided into 
partially and totally implanted middle ear devices. The 
typical partially implantable active MEI consists of outer 
and inner parts. The outer part contains microphones, 
primary induction coils, and batteries, while the inner part 
comprises secondary induction coils and actuators. The 

actuator, which is attached to the ossicular chain, is the 
most critical component of the inner parts. Piezoelectric 
and electromagnetic transducers are typical actuators for 
partially implanted middle ear prostheses (81,82).

There are various partially active MEIs with different 
driver concepts and attachment points. A combination of 
the FE model of the ear and prosthesis could be used to 
optimize the MEI designing parameters; for example, the 
implantation position, direction, and physical characteristics 
of transducers, including magnets, attachments, and coils. 
Transducer attachment sites include the umbo, incus body, 
incus long process, and stapes. Studies have shown that 
either the stapes head or footplate can produce better 
hearing performance than other sites (83,84). It has also 
been shown that a high coupling stiffness between the 
attachment clip and the ossicular chain is an optimization 
factor that can help maximize the stimulation efficiency of 
the transducer (61).

The stimulation angle of the implanted transducer 
influences hearing performance. For example, the ratio of 
equivalent sound pressure is reduced when the excitation 
direction is 20° and 60° off the longitudinal axis of the  
stapes (84). Mocanu et al. reported the same conclusion 
when the excitation direction was 45°–60° off the 
longitudinal stapes axis (85). Therefore, tilting of the 
actuator from the stapes longitudinal axis is likely to reduce 
hearing performance. The mass of the transducer also 
affects the ear response. Gan et al. found that a lower mass 
loading of 22.5 mg to the incus long process produced an 
average improvement of 3.5 dB, compared to 37.5 mg from 
250 to 8,000 Hz (86). For the eardrum driving transducer, 
as the mass increases, the displacement of the stapes will 
decrease more above 2,000 Hz. For the floating mass 
transducer, as the mass increases, the displacement of the 
stapes will deteriorate above 750 Hz (87).

The implanted inner parts convert sound signals into 
vibrations by directly acting on the ossicular chain. Forward 
stimulation is a method of achieving hearing compensation 
by constructing a complete auditory pathway. In most cases, 
the driving site on the cochlea is the OW. In addition, there 
is also direct stimulation on the RW to transmit vibrational 
signals, causing changes in the inner ear pressure to restore 
hearing, known as reverse stimulation (63). An actuator 
to stimulate the RW membrane becomes feasible when 
it is difficult to couple the actuator with the ossicles in 
patients with ossicular chain injury. Similar to the forward 
stimulation, parameters such as the contact area and mass 
of the transducer are considered in the RW drivers. Zhang 

Figure 4 Three types of stapes prostheses (32,72). (A) Piston 
stapes prosthesis. (B,C) Two different chamber stapes prostheses. 

A B C
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and Gan studied two RW actuators with different masses 
and areas and reported that the equivalent sound pressure 
produced by the two types of drivers is different (83). Tian 
et al. further studied the effect of the transducer area and 
found that an actuator occupying 25% of the RW area can 
produce a higher equivalent sound pressure (88).

Nakajima et al. demonstrated that a coupling layer 
between the transducer and the RW could improve 
hearing performance (89). Arnold et al. reported a similar 
conclusion from a specimen experiment (90). Tian et al. 
showed that the presence of a coupling layer could reduce 
the influence of the contact area size on equivalent sound 
pressure compared to a direct coupling on the interface. 
Overall, a coupling layer with a lower Young’s modulus can 
perform better, which may benefit the structural design of 
the actuator (88). Liu et al. further expanded the range of 
the transducer area and the elastic modulus of the coupling 
layer, which was consistent with Tian et al.’s work (88,91).

Loading on the RW transducer can influence hearing 
performance. Lupo et al. conducted animal experiments 
and showed that changes in the transducer loading pressure 
do not affect the performance (92). However, Maier et al. 
confirmed that applying static preload on the transducer 
could improve the RW stimulation performance in a 
human cadaver temporal bone experiment (93). Liu et al. 
demonstrated that static preload on the RW transducer could 
slightly reduce low-frequency performance but increase 
high-frequency performance using the FEM (91). Therefore, 
applying static preload on the transducer is a better treatment 
for patients with high-frequency hearing loss.

In addition to the partially implanted active middle ear 
devices, totally implanted active MEIs can also benefit from 
the FEM. Gan et al. designed a totally implantable hearing 
system, including an implantable coil, microphone, audio 
signal processor, rechargeable battery, and transducer, to 
study the coupling simulation between the transducer and 
coil using the FEM. They found that active stimulation of 
the coupling coil could produce a higher stapes displacement 
response compared to when the stimulus was applied to the 
ear canal either without a transducer or a coupling coil (94).  
Gan et al. also studied the mass load effect using the same 
model, and all of the results were consistent with their 
temporal experiment. Moreover, this work demonstrated 
the advantages of designing and optimizing prostheses 
using the FEM, which is convenient and repeatable when 
optimizing the various parameters (94). Therefore, the FEM 
could be used to study relevant factors in totally implantable 
active middle ear devices, such as the coils as well as the 

microphone’s mass, position, and material.

Models for the CI

The most widely used inner ear prosthesis is the CI. Coding 
strategies (18) and speech processors (95) can improve 
hearing perception. Electrodes directly stimulating the 
auditory nerves are critical for optimization. The FEM 
has been used to optimize the shape, positions, stimulation 
strategies, and other parameters of the electrodes (96). In 
addition, the FEM can even simulate some situations that 
are impossible to perform in a real human cochlea. For 
example, the 3D CI model provides information about 
cochlear electrophysiology and neurophysiology from a 
numerical point of view, which is helpful for deep and scale 
investigations that are not feasible in animals or living 
humans (97). 

The shape of the CI electrodes can be classified as planar, 
banded, half banded, and ball electrodes, which affect the 
efficiency of electrical stimulation. Studies have shown that 
the planar electrode has the highest stimulation efficiency 
among the other electrodes (98). Some researchers have 
also studied the position of the electrode (99). Electrode 
placement includes the modiolar, midscala, and lateral 
positions, which correspond to electrodes on the market, 
such as pre-curved modiolar hugging, midscala, and straight 
lateral wall electrode arrays. Frijns et al. compared lateral 
and modiolar hugging electrode positions using a volume 
conduction model of the cochlea. They found that the latter 
position could reduce the current thresholds while retaining 
excellent spatial selectivity in the basal turn, which might 
be because the electrode was closer to the nerve fiber and 
lowered the impedance (48). The clinical study is consistent 
with the result of the simulation. The modiolar electrode 
had better hearing preservation than midscala or lateral 
electrode (100). However, some results have shown that the 
electrode-modiolus distance does not affect the stimulation 
threshold (101). Overall, the relationship between electrode 
to modiolus distance and the current levels is still unclear 
(102-105). This uncertainty could be due to the potentially 
varying survival nerve fibers in different CI patients. For 
people with few nerve fibers survival, the distance between 
electrodes may not have a significant impact. The FEM 
could be used to establish nerve fiber models of patients 
with different types of hearing impairment for further 
investigation.

The electrode stimulation strategy, which determines 
electric field distributions inside the cochlea (106), is a vital 
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factor that has been modified during the CI development 
stage. Monopolar stimulation can cause extensive electrical 
interactions, and thus, research into multielectrode 
stimulation strategies, such as bipolar or tripolar stimulation, 
has been conducted (106-108). Bipolar stimulation refers 
to the stimulation of two adjacent electrodes with opposite 
polarities. Three adjacent electrodes are stimulated in 
tripolar stimulation, where the center electrode and both 
sides receive stimulation with opposite polarity. The 
stimulation current amplitude is half that of the center 
electrode, as shown in Figure 5. The FEM calculates the 
spatial selectivity by measuring neural responses under 
different stimulation strategies. Clinical evaluation can be 
carried out through postoperative evaluation. Model and 
clinical experiments have shown that tripolar and bipolar 
stimulations cover narrower auditory nerve regions than 
the traditional monopolar stimulation, which signifies 
better spatial selectivity (19,106,109-111). Although 
multielectrode stimulation strategies have been widely 
studied to increase spatial selectivity, monopolar stimulation 
is still the most common configuration. Because the bipolar 
and tripolar stimulations need a higher current, thereby 
reducing or eliminating the current focusing (111-113).  
In short, multielectrode stimulation requires further 
research combined with battery development. Furthermore, 
current steering controls the generation of virtual channels 
by reasonably distributing the current to the two adjacent 
electrodes, which is also a promising research direction 
(114,115).

Although the most widely used CI is partially implanted, 
the totally implantable cochlear implant (TICI), invisible 
from the outside, is more promising (116,117). All of 
the parameters of the implantable parts, such as the 
electrodeposition and configuration, can be analyzed 
using FEM, which is similar to the partially implantable 
CI. Furthermore, microphones, primary induction coils, 
and batteries that may affect signal transmission should 
be considered. For example, the surrounding tissues may 

affect the coil’s working status (118). In addition, electrical 
coupling between the coil and speech processor that may 
influence the transmission efficiency also requires further 
investigation.

Discussion

This paper discussed the design and optimization of auditory 
prostheses using the FEM. The FEM uses mathematical 
approximations to simulate the ear and hearing device 
with parametrical geometry and materials. Imaging and 
measuring technologies provide geometrical data for 
modeling, which allows for the determination of the model’s 
accuracy and simulation credibility. A designed prosthesis 
model can be implanted into the ear model to simulate 
some clinically relevant situations. The post-implantation 
response using FE models could be used as an indicator to 
evaluate the performance of the prosthesis. Some cadaveric 
or animal experiments have identified valuable parameters, 
such as the mass or position of the middle ear prosthesis or 
the position of the CI electrode, which should be optimized 
to improve hearing performance. The FEM can overcome 
the limitations of testing parameters from multiple tests in 
cadaveric or animal experiments, reduce costs, and increase 
repeatability. However, this does not mean that the FEM 
can completely replace cadaveric or animal experiments. 
The convenience of FEM should be utilized to explore 
more effective directions for animal experiments. Finally, 
we proposed some suggestions about auditory prosthesis 
design and optimization with the FEM.

The scope of the auditory model

Currently, most FEM-based auditory models are used for 
designing prostheses that act on the auditory peripheral 
system. However, many auditory prostheses act on the 
auditory central nervous system, such as ABIs and AMIs 
(9,10). There is a lack of research about ABI and AMI 
design or optimization using the FEM, which may be 
because the model complexity is relatively high. In the 
future, a hybrid model could be built, which includes the 
ear and other structures of the auditory center from the 
cochlea to the auditory cortex (such as nerve fibers) and 
integrates implanted parts (such as electrodes), to study 
the post-implanted performance of auditory prostheses by 
observing the potential distribution. As for ABIs or AMIs, 
the post-implantation response can be used to design 
and optimize parameters such as electrodeposition or 

Figure 5 Three electrode stimulation strategies. (A) Monopolar 
stimulation. (B) Bipolar stimulation. (C) Tripolar stimulation. I, 
the value of the stimulation current.

I I I−I −I/2 −I/2

A B C
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stimulation strategy.

Accuracy of ear and prosthesis model

It is also essential to determine whether the ear and 
prosthesis models effectively reflect a clinically relevant 
situation. Firstly, the level of detail included in a model 
should be determined based on the research objective; a 
more detailed model does not necessarily mean higher 
accuracy. Secondly, the material properties of the ear or 
prosthesis model require more accurate measurement data, 
such as the non-linear mechanical properties of soft tissues 
(119-124). Thirdly, many auditory prostheses are designed 
based on normal-hearing specimens and cannot reflect 
the features of lesions. For example, the RW stimulation 
prosthesis is designed for patients with a damaged ossicular 
chain. Different deformations of the ossicular chain model 
can affect the observed ear response, further influencing the 
design and optimization of the prosthesis (29). Therefore, a 
model that can reflect the lesion is important.

Modeling time and complexity

Building an accurate and detailed ear and prosthesis 
model is time-consuming and complicated. Modeling 
work requires background knowledge from various fields, 
including anatomy, physiology, audiology, and mechanical 
engineering. A complicated, highly detailed ear and 
prosthesis model may be required for studying neural 
responses or a personalized design, leading to a longer 
modeling time. Moreover, the simulation time varies with 
the complexity of the model, ranging from minutes to hours 
or days, and depends on the computer’s configuration (125). 

The FEM can be utilized to shorten the decision time 
and reduce operational complexity for surgical planning. 
Therefore, a simple, convenient, and rapid modeling 
platform is necessary. The platform should automatically 
and promptly establish a patient-specific ear model and 
quickly suggest a well-matched prosthesis type and surgical 
plan. Moreover, the platform should also predict the 
recovery of hearing performance after implantation.

Evaluation

Numerous studies have shown that auditory-related 
responses calculated using numerical models can effectively 
reflect the optimization performance. For example, FE 
models can predict the evoked compound action potential 

and compare it with clinical measurements to estimate 
whether the given CI stimulation level is suitable (126). 
However, many calculated responses obtained from 
the model are difficult to relate to clinical data directly. 
Therefore, researchers need to identify more indicators and 
compare them with experimental or clinical measurements 
to evaluate hearing performance.
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