First author, year (reference)	Study characteristics				Adjustment for confounding														
					gr F rbid ge span ing jery				ing	jery mor	ds ds	or/ ts	Confid RE Tmt effect	Adjusted % 5 yr OS W <i>vs.</i> Seg			Adjusted % 5 yr LCSS W <i>vs</i> . Seg		
	Source	Yrs	Ν	Stage ^a	Demogr F CoMorbid	CoMorbid	Hi stage	Time span	Q setting	Q surgery Fav tumor	Statistical methods	# adj for/ Subsets	Con Tmt	W	Seg	HR	W	Seg	HR
Wedge resection vs. s	segmentector	iy											•		- A-				
Smith ⁿ 2013 (63)	SEER	98-06	3,525 ⁿ	clA1,2							PA, PQ, PM	7/2	М	-	-	1.19	-	-	1.22
Smith ⁿ 2013 (63)	SEER	98-06	3,525	clA							PA, PQ, PM	7/2	М	-	-	1.23	-	-	1.32
Koike 2013 (64)	Japan ×1	98-09	328	clA							MV	15	М	-	-	-	68 ^d	91 ^d	3.18
Cao 2018 (36)	SEER	04-13	252 ^b	cIA1							PM	11	L	76	74	1.05	83	91	.75
Cao 2018 (36)	SEER	04-13	852 ^b	cIA2							PM	11	L	64	72	1.34	75	85	1.65
Cao 2018 (36)	SEER	04-13	440 ^b	cIA3							PM	11	L	48	53	1.17	62	69	1.25
Zhang ° 2016 (65)	SEER	98-12	3,391	clA							PA	8/2	L	-	-	1.15	-	-	1.09
Zhang ^p 2016 (65)	SEER	98-12	1,949	clA							PA	8/2	L	-	-	1	-	-	.92
Fan 2020 (47)	SEER	04-15	1,026	clA1							MV	5	VL	71 ^d	76 ^d	1.42	-	-	-
Dai 2016 (48)	SEER	00-12	981	clA1							MV	6	VL	68 ^d	71 ^d	1.08	83 ^d	81 ^d	.93
Dai 2016 (48)	SEER	00-12	3,104	cIA2							MV	8	VL	62 ^d	67 ^d	1.36	73 ^d	82 ^d	1.42
Zhao 2019 (66)	SEER	04-15	1,372 ^b	clA							MV, PM	10/3	VL	39	68	1.29	77	78	-
Dziedzic 2017 (50)	Polish Reg	07-13	462 ^b	cl-IIA							PM	5	VL	54	79	1.49	-	-	-

Table 3 Long-term outcomes in generally healthy patients: wedge resection vs. segmentectomy Ordered by resection extent, degree of confidence that results reflect the effect of the treatment, stage

Inclusion criteria: studies with multivariable or propensity adjustment of wedge resection vs. segmentectomy, 2000–21, with >50 pts per arm in generally healthy patients with generally solid tumors; excluding studies that accrued most patients before 2000. The HR reference is segmentectomy, i.e., HR >1 reflects worse outcome compared with segmentectomy. Bold highlights better outcome (>2-point difference); Light green shading highlights statistically significant difference (lighter shade = univariable; darker = multivariable).

Legend (Tables 1-3):

^a, 8th edition stage classification (reported stage is translated into current 8th edition nomenclature for the sake of uniformity and contemporary application); ^b, propensity matched pairs (total); ^c, all solid tumors (GGN excluded); ^d, unadjusted results; ^e, 3-year survival (in brackets because not comparable to 5-year OS); ^f, All resected by VATS; ^g, 30–50% were "lobe-like" segments (lingula-sparing Left Upper Lobectomy, lingulectomy or basilar quadri-segmentectomy); ^h, cN0 but pN1 (OS in brackets because not comparable to unselected cN0 cohorts; ⁱ, all with visceral pleural invasion (technically stage IB but ≤ 2 cm); ^k, predominantly wedge (\geq 80%); ⁱ, ACS special study (involving enhanced chart abstraction of clinical factors); ^m, lepidic adenocarcinoma; ⁿ, for entire study, not this specific cohort; ^o, adenocarcinoma; ^p, squamous carcinoma.

HR, hazard ratio; LCSS, lung cancer specific survival; Lobe, lobectomy; NCDB, US national cancer database; NS, not statistically significant; OS, overall survival; Reg, registry; SEER, Surveillance, Epidemiology, and End Results database; Seg, segmentectomy; SL, sublobar resection (segmentectomy or wedge); STS-MC, Society of thoracic Surgeons Database, linked to Medicare; VATS, video-assisted thoracic surgery; W, wedge; Yrs, years (of patient accrual).

Adjustment for Confounding: Demogr F, demographic factors (age, sex, socioeconomic); CoMorbid, comorbidities; Hi stage, occult stage inaccuracy due to differences in extent of assessment; Time span, adjustment for changes during the study period or differential use of the interventions; Q settings, discrepancy in the facilities or settings performing the interventions; Q treatmt, quality of the treatment (e.g., margin distance, adjuvant therapy); Fav tumor, selection of less aggressive tumors for an intervention; Statistical methods, methods used to adjust for confounding; Subset, additional subset or sensitivity analyses; # adj for, number of factors adjusted for; Conf RE tmt effect, Confidence that results reflect the effect of the treatment vs. confounding factors. MV, Multivariable model (e.g., Cox regression); PA, propensity score adjustment; PM, propensity matching; PQ, analysis of propensity score quintiles.

Color	Categories of confounding	Addressed	Neutral (likely little effect)	Limited concern	Moderate concern	High concern	Clearly confounded
code:	Confidence RE treatment effect	VH-very high	H-high	M-moderate	L-low	VL-very low	confidence