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Background: The cardiac surgery-associated acute kidney injury (CSA-AKI) occurs in up to 1 out of 3 
patients. Off-pump coronary artery bypass grafting (OPCABG) is one of the major cardiac surgeries leading 
to CSA-AKI. Early identification and timely intervention are of clinical significance for CSA-AKI. In this 
study, we aimed to establish a prediction model of off-pump coronary artery bypass grafting-associated acute 
kidney injury (OPCABG-AKI) after surgery based on machine learning methods. 
Methods: The preoperative and intraoperative data of 1,041 patients who underwent OPCABG in 
Chest Hospital, Tianjin University from June 1, 2021 to April 30, 2023 were retrospectively collected. 
The definition of OPCABG-AKI was based on the 2012 Kidney Disease Improving Global Outcomes 
(KDIGO) criteria. The baseline data and intraoperative time series data were included in the dataset, which 
were preprocessed separately. A total of eight machine learning models were constructed based on the 
baseline data: logistic regression (LR), gradient-boosting decision tree (GBDT), eXtreme gradient boosting 
(XGBoost), adaptive boosting (AdaBoost), random forest (RF), support vector machine (SVM), k-nearest 
neighbor (KNN), and decision tree (DT). The intraoperative time series data were extracted using a long 
short-term memory (CONV-LSTM) deep learning model. The baseline data and intraoperative features 
were then integrated through transfer learning and fused into each of the eight machine learning models 
for training. Based on the calculation of accuracy and area under the curve (AUC) of the prediction model, 
the best model was selected to establish the final OPCABG-AKI risk prediction model. The importance of 
features was calculated and ranked by DT model, to identify the main risk factors. 
Results: Among 701 patients included in the study, 73 patients (10.4%) developed OPCABG-AKI. The 
GBDT model was shown to have the best predictions, both based on baseline data only (AUC =0.739, 
accuracy: 0.943) as well as based on baseline and intraoperative datasets (AUC =0.835, accuracy: 0.929). 
The ranking of importance of features of the GBDT model showed that use of insulin aspart was the most 
important predictor of OPCABG-AKI, followed by use of acarbose, spironolactone, alfentanil, dezocine, 
levosimendan, clindamycin, history of myocardial infarction, and gender. 
Conclusions: A GBDT-based model showed excellent performance for the prediction of OPCABG-AKI. 
The fusion of preoperative and intraoperative data can improve the accuracy of predicting OPCABG-AKI. 
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Introduction

Acute kidney injury (AKI) is a serious complication after 
cardiac surgery (1). A meta-analysis (2) reported that the 
incidence of cardiac surgery-associated acute kidney injury 
(CSA-AKI) was approximately 26.0–28.5%. The 28- and 
90-day mortality rate of patients with CSA-AKI have 
been shown to reach 10.7% and 30%, respectively (3). 
The pathogenesis of CSA-AKI is complex and includes 
ischemia-reperfusion injury, inflammation from surgical 
trauma, oxidation, and other factors (4,5). Although off-
pump coronary artery bypass grafting (OPCABG) can avoid 
ischemia-reperfusion injury (6), the hemodynamic impact of 
the procedure and the possible incomplete revascularization 
can still increase the risk of off-pump coronary artery 
bypass grafting-associated acute kidney injury (OPCABG-
AKI) (7-9). Therefore, it is of great clinical significance 
to establish an accurate prediction model for OPCABG-
AKI to identify the high-risk patients (10,11). Recently, 
CSA-AKI has been predicted by machine learning in many 

studies (12-15). However, these studies included a large 
number of surgical types, inconsistent definitions of AKI 
and incorporated few intraoperative data (16). In this study, 
we compared the performance of eight different machine 
learning models to predict OPCABG-AKI, in order to 
select the optimal model for identifying high-risk patients 
early and guiding perioperative clinical decision-making. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://jtd.amegroups.com/
article/view/10.21037/jtd-24-711/rc).

Methods

Study population

The preoperative and intraoperative data of 1,041 patients 
who underwent OPCABG in Chest Hospital, Tianjin 
University from June 1, 2021 to April 30, 2023 were collected. 
The average age of these patients was 67.69±6.59 years,  
and the number of males and females was 743 and 298, 
respectively. After screening and excluding patients with 
missing data, the data of 701 patients were finally included 
in the dataset. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). The study 
was approved by the Medical Ethics Committee of Chest 
Hospital, Tianjin University (No. 2021 KY-008-01). The 
requirement for informed consent was waived due to the 
retrospective nature of this study. The confidentiality and 
privacy of patients was guaranteed.

OPCABG-AKI diagnostic criteria

The definition of AKI was based on the serum creatinine 
(SCr) based Kidney Disease Improving Global Outcomes 
(KDIGO) criteria (17). However, the urine output criteria 
were not used due to lack of data. The diagnostic criteria 
were therefore as follows: SCr rises by ≥26.5 μmol/L  
(≥0.3 mg/dL) or SCr rises to ≥1.5 times compared to 
baseline within 7 days after surgery; or need for renal 
replacement therapy.

Highlight box

Key findings
• The gradient-boosting decision tree model was deemed the best 

model for predicting off-pump coronary artery bypass grafting 
(OPCABG)-associated acute kidney injury (AKI) (OPCABG-
AKI) out of a set of eight machine learning models. The addition 
of intraoperative time series data in addition to baseline data may 
improve predictive performance.

What is known and what is new?
• OPCABG is one of the major cardiac operations leading to 
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recognition and timely intervention have important clinical 
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Data collection and data preprocessing

The training set comprised 80% of the dataset and the test 
set comprised the remaining 20% of the dataset, including 
baseline data and intraoperative time series data. The 
baseline data included the preoperative data, intraoperative 
variables, and discrete variable data. The indicators with a 
missing rate over 10% were deleted, and then the remaining 
values were processed. Intraoperative time series data were 
collected by LiDCO hemodynamic monitor (Masimo, 
Irvine, CA, USA), Nonin oximeter (Nonin Medical, 
Plymouth, MN, USA), Philips multi-parameter portable 
ECG monitor (Philips, Amsterdam, The Netherlands), and 
Ohmeda anesthesia machine (GE Healthcare, Chicago, 
IL, USA), and the sampling frequency was adjusted to 
1 Hz. Variables with the same value were considered as 
outliers, and indicators with an outlier rate of more than 
10% were removed, and then missing numerical variables 
were imputed by the upper and lower means, and modal 
imputation was used for categorical variables.

Predictors 

The predictors used for machine learning model 
development were detailed in Table S1.

Statistical analysis

A total of eight machine learning models were trained 
to predict OPCABG-AKI based on the baseline data 
only, including logistic regression (LR), support vector 
machine (SVM), decision tree (DT), random forest (RF), 
k-nearest neighbor (KNN), gradient-boosting decision 
tree (GBDT), adaptive boosting (AdaBoost), and eXtreme 
gradient boosting (XGBoost). In this study, k-fold cross-
validation was adopted, and k was set to 10, that is, the 
original data was randomly divided into 10 parts without 
repeated sampling. One of them is selected as the test set at 
a time, and the remaining nine are used as the training set 
to train the model. Repeat step 2 10 times to get a model 
after training on each training set. Test the model against 
the appropriate test set, calculate and save the model’s 
evaluation metrics. The average of the 10 groups of test 
results is calculated as an estimate of the accuracy of the 
model and as a performance index of the model under 
the current k-fold cross-validation. The intraoperative 
time series data were extracted by means of a long short-

term memory (CONV-LSTM) deep learning model. The 
baseline data and the extracted intraoperative features were 
fused by the transfer learning and fed into each of the eight 
machine learning models for further training. The model 
with the best predictive performance was identified based 
on the calculated accuracy and area under the curve (AUC). 
Afterwards, the feature importance was calculated and 
ranked by DT model to screen out the main risk factors. All 
statistical analyses were performed using SPSS version 26. 
The statistical analysis plan was depicted in Figure 1.

Results

Prediction of OPCABG-AKI by machine learning methods 

Among 701 patients included in the study, 73 (10.4%) 
developed OPCABG-AKI. The patients inclusion flowchart 
was showed in Figure 2. Table 1 shows the performance of 
the models based on the baseline data only; the AUC of the 
GBDT model was the highest (AUC =0.739), followed by 
AdaBoost model (AUC =0.732), SVM model (AUC =0.731), 
LR model (AUC =0.717), XGBoost model (AUC =0.698), 
RF model (AUC =0.647), KNN model (AUC =0.578), and 
DT model (AUC =0.517). Table 2 shows the performance 
of these models when intraoperative data were added 
to the baseline data; the AUC of the GBDT model was 
again the highest (AUC =0.835), followed by SVM model 
(AUC =0.737), LR model (AUC =0.709), XGBoost model 
(AUC =0.703), RF model (AUC =0.656), AdaBoost model 
(AUC =0.578), KNN model (AUC =0.573) and DT model 
(AUC =0.443). These data demonstrate that the addition 
of intraoperative time series data resulted in a considerable 
increase in AUC; in case of the GBDT model, AUC 
increased by 0.096.

Interpretability of machine learning models in AKI 
forecasting

The top 20 features of the GBDT model for feature 
importance are shown in Figure 3. Use of insulin aspart is 
the most important feature of OPCABG-AKI, followed 
by use of acarbose, spironolactone, alfentanil, dezocine, 
levosimendan, clindamycin, history of myocardial infarction, 
sex, cerebral tissue oxygen saturation (SctO2; left), SctO2 
(right), lactate, creatine kinase (CK), troponin, heart rate, 
family history of surgery, clopidogrel, age, systemic vascular 
resistance (SVR), and angiotensin receptor blockers (ARBs).

https://cdn.amegroups.cn/static/public/JTD-24-711-Supplementary.pdf
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Figure 1 The statistical analysis plan diagram. OPCABG, off-pump coronary artery bypass grafting; LSTM, long short-term memory; 
AdaBoost, adaptive boosting; XGBoost, eXtreme gradient boosting; SVM, support vector machine; KNN, k-nearest neighbor.

Figure 2 The patients inclusion flowchart. OPCABG, off-pump coronary artery bypass grafting; SCr, serum creatinine; AKI, acute kidney 
injury.
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Discussion

CSA-AKI is a common complication after cardiac surgery 
with an incidence rate of up to 1 in 3 patients (18-22), 
which can lead to increased postoperative mortality, length 
of hospitalization time, and healthcare costs (23-25).  
In a meta-analysis including 86 randomized controlled 
trials (RCTs) and 25,855 patients, 5,082 (20%) patients 
developed CSA-AKI (11). In addition, the development 
of kidney disease is accompanied by a high incidence of 

gastrointestinal bleeding and surgical re-exploration for 
bleeding, respiratory tract infections, and sepsis (26,27). 
Therefore, the accurate prediction of CSA-AKI before 
surgery and early detection of high-risk patients can help 
clinicians to strengthen the physiological and hemodynamic 
monitoring and provide personalized fluid management at 
an early stage, which intends to optimize the systemic and 
renal perfusion in the high-risk patients and reduce the risk 
of CSA-AKI (28). A number of machine learning models 
have been developed to predict CSA-AKI. However, there 
are still no guidelines to recommend predictive models (29).  
Lee et al. (30) showed that XGBoost outperformed 
traditional LR or risk scores in prediction of CSA-AKI 
in their study. In another study, an integrated model 
(RF + XGBoost) was shown with the best performance 
in prediction of CSA-AKI. However, most models have 
been limited by heterogeneity of surgery types included, 
inconsistent definitions of AKI, and different completeness 
of perioperative data collection. Our present study, which 
specifically investigated AKI in the setting of OPCABG, 
determined that a GBDT model had the best predictive 
performance. Prediction could even be improved further by 
incorporating intraoperative time series data. 

The occurrence of CSA-AKI depends on the patients’ 
preoperative condition and intraoperative physiological 
processes that are detrimental to the kidneys, including 
hypotension, low cardiac output syndrome, intraoperative 
catecholamine surge, decreased vasomotor responsiveness, 
and others (31). Both preoperative and intraoperative 

Table 1 AUC and accuracy of eight machine learning models based 
on baseline data

Machine learning model AUC Accuracy rate

LR 0.717 0.786

SVM 0.731 0.793

DT 0.517 0.871

RF 0.647 0.936

KNN 0.578 0.929

GBDT 0.739 0.943

AdaBoost 0.732 0.907

XGBoost 0.698 0.936

AUC, area under the curve; LR, logistic regression; SVM, 
support vector machine; DT, decision tree; RF, random forest; 
KNN, k-nearest neighbor; GBDT, gradient-boosting decision 
tree; AdaBoost, adaptive boosting; XGBoost, eXtreme gradient 
boosting.

Table 2 AUC and accuracy rate of eight machine learning models 
based on baseline and intraoperative datasets

Machine learning model AUC Accuracy rate

LR 0.709 0.786

SVM 0.737 0.829

DT 0.443 0.829

RF 0.656 0.936

KNN 0.573 0.936

GBDT 0.835 0.929

AdaBoost 0.578 0.907

XGBoost 0.703 0.943

AUC, area under the curve; LR, logistic regression; SVM, 
support vector machine; DT, decision tree; RF, random forest; 
KNN, k-nearest neighbor; GBDT, gradient-boosting decision 
tree; AdaBoost, adaptive boosting; XGBoost, eXtreme gradient 
boosting.

Figure 3 GBDT model predicts the feature importance ranking of 
OPCABG-AKI. MI, myocardial infarction; L, left; R, right; CK, 
creatine kinase; HR, heart rate; SVR, systemic vascular resistance; 
GBDT, gradient-boosting decision tree; OPCABG-AKI, off-pump 
coronary artery bypass grafting-associated acute kidney injury. 
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factors are helpful in prediction of CSA-AKI. Intraoperative 
features reflect intraoperative physiological changes 
in the heart. Tseng et al. (32) emphasized the value of 
intraoperative features in prediction of CSA-AKI. A 
machine learning algorithm was proposed in a single-center 
cohort study that reclassified approximately 40% of surgical 
patients; the patients were predicted as low-risk AKI with 
a preoperative model yet were classified as high-risk after 
incorporating intraoperative characteristics (33). However, 
processing intraoperative time series data as the minimum, 
maximum, average, and short- and long-term variability 
may result in the loss of the useful information (34). The 
advantage of our present study was the combination of 
machine learning and deep learning. Intraoperative features 
were extracted by a CONV-LSTM deep learning model 
based on intraoperative time series data. Baseline data were 
subsequently fused with complex features of intraoperative 
continuous data by means of migration learning, and 
the integrated data were fed into the machine learning 
model to predict OPCABG-AKI. Compared with the 
use of preoperative data alone, the data fusion of baseline 
data and intraoperative continuous data with complex 
features improved the accuracy of the GBDT model in the 
prediction of OPCABG-AKI.

Our findings have some clinical implications. For 
patients with risk factors of postoperative AKI, although 
the preoperative factors are difficult to be addressed, the 
attending surgeons and anesthesiologists would regard 
these patients as high-risk individuals, focus on their renal 
function, actively give intervention measures to protect the 
kidney, closely monitor the hemodynamics, minimize the use 
of nephrotoxic drugs, and use goal-directed hemodynamic 
treatment, which would not only ensure effective renal 
perfusion but also avoid fluid overload. Preoperative variables 
reflected the baseline characteristics of patients, while 
intraoperative variables were more closely related to the 
management of patients by surgeons and anesthesiologists. 
The intraoperative variables were intraoperative real-time 
monitoring, and corresponding intervention measures could 
be taken in time to avoid the occurrence of postoperative 
AKI. Both of the preoperative baseline characteristics and 
the intraoperative real-time interventions have significant 
associations with postoperative AKI.

Previously identified risk factors for CSA-AKI, such as 
diabetes mellitus, preoperative renal function, age, type 
of surgery, duration of surgery, left ventricular ejection 
fraction, body mass index, and hypertension (14,22,35), 
were not included in the top 20 features for predicting 

OPCABG-AKI in this study. The main risk factors 
screened in this study included insulin aspart, acarbose, 
spironolactone, alfentanil, dezocine, levosimendan, 
clindamycin, history of myocardial infarction, gender, 
and others. A total of nine of the top 20 features in the 
importance of features were medicines used before and 
during surgery, among which the top five features were all 
medicines, which suggested that the related drugs can affect 
the renal function after cardiac surgery.

However, there are certain limitations to our study. 
Our study only included one single-center nature, and the 
number of AKI events is relatively small, and there was a lack 
of external validation and prospective validation. Different 
stages of AKI were not studied in this study, limited clinical 
significance. Future studies should include multi-center 
data, conduct prospective design, and follow up to verify the 
prediction effect of the model. It may be more beneficial to 
design observation endpoints for different degrees of AKI to 
guide clinical practice. Besides, the intra procedural data is 
lacking, like number of anastomoses, type of grafts. We will 
include more intra procedural data in our study in the future. 

Conclusions

This study demonstrates the applicability of machine 
learning in predicting the development of OPCABG-
AKI. Despite the previous models with AUC >0.7 can be 
helpful in predicting the risk of AKI following OPCABG, 
the prediction performance of the present GBDT model 
is much better. Moreover, the data fusion of preoperative 
and intraoperative characteristics improved the prediction 
performance of the GBDT model. The GBDT model 
may assist clinicians in the risk stratification and clinical 
decision-making for OPCABG-AKI in these patients who 
are undergoing OPCABG.

Acknowledgments

Funding:  This  work was supported by Enze Pain 
Management Medical Research Project; Science and 
Technology Project of Tianjin Health Commission (No. 
TJWJ2023MS027); Tianjin Science and Technology 
Planning Project (No. 20JCZDJC00810).

Footnote

Reporting Checklist: The authors have completed the 
TRIPOD reporting checklist. Available at https://jtd.

https://jtd.amegroups.com/article/view/10.21037/jtd-24-711/rc


Journal of Thoracic Disease, Vol 16, No 7 July 2024 4541

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2024;16(7):4535-4542 | https://dx.doi.org/10.21037/jtd-24-711

amegroups.com/article/view/10.21037/jtd-24-711/rc

Data Sharing Statement: Available at https://jtd.amegroups.
com/article/view/10.21037/jtd-24-711/dss

Peer Review File: Available at https://jtd.amegroups.com/
article/view/10.21037/jtd-24-711/prf

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://jtd.amegroups.
com/article/view/10.21037/jtd-24-711/coif). J.M.A. serves 
as an unpaid editorial board member of Journal of Thoracic 
Disease from October 2023 to September 2025. The other 
authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). The study was approved by the Medical 
Ethics Committee of Chest Hospital, Tianjin University 
(No. 2021 KY-008-01). The requirement for informed 
consent was waived due to the retrospective nature of this 
study. 

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Rasmussen SB, Boyko Y, Ranucci M, et al. Cardiac 
surgery-Associated acute kidney injury - A narrative 
review. Perfusion 2023. [Epub ahead of print]. doi: 
10.1177/02676591231211503.

2. Yu Y, Li C, Zhu S, et al. Diagnosis, pathophysiology 
and preventive strategies for cardiac surgery-associated 
acute kidney injury: a narrative review. Eur J Med Res 
2023;28:45.

3. von Groote T, Sadjadi M, Zarbock A. Acute kidney injury 
after cardiac surgery. Curr Opin Anaesthesiol 2024;37:35-41.

4. Milam AJ, Liang C, Mi J, et al. Derivation and Validation 
of Clinical Phenotypes of the Cardiopulmonary 
Bypass-Induced Inflammatory Response. Anesth Analg 
2023;136:507-17.

5. Fan X, Shao Z, Gao S, et al. Clinical characteristics and 
risk factors of cardiac surgery associated-acute kidney 
injury progressed to chronic kidney disease in adults: A 
retrospective, observational cohort study. Front Cardiovasc 
Med 2023;10:1108538.

6. Gaudino M, Angelini GD, Antoniades C, et al. Off-Pump 
Coronary Artery Bypass Grafting: 30 Years of Debate. J 
Am Heart Assoc 2018;7:e009934.

7. Takaki J, Morinaga J, Sadanaga T, et al. Renal Biomarkers 
in the Early Detection of Acute Kidney Injury After 
Off-Pump Coronary Artery Bypass Grafting. Circ J 
2024;88:951-8.

8. Shoulei Chen, Cheng Luo, Chen Fang, et al. Development 
and Validation of a Novel Nomogram for Predicting 
Perioperative Acute Kidney Injury Following Isolated Off-
Pump Coronary Artery Bypass Grafting Surgery. Heart 
Surg Forum 2023;26:E832-41.

9. Ko SH, Song JW, Shim JK, et al. Low Intraoperative 
Cerebral Oxygen Saturation Is Associated with Acute 
Kidney Injury after Off-Pump Coronary Artery Bypass. J 
Clin Med 2023;12:359.

10. Wang KC, Moore AE. Cardiac Surgery-Associated Acute 
Kidney Injury in Adults: Clinical Outcomes, Prevention 
Strategies, and Future Therapies in the Postoperative 
Period. Nephrol Nurs J 2023;50:321-32.

11. Hariri G, Collet L, Duarte L, et al. Prevention of cardiac 
surgery-associated acute kidney injury: a systematic review 
and meta-analysis of non-pharmacological interventions. 
Crit Care 2023;27:354.

12. Thongprayoon C, Pattharanitima P, Kattah AG, et al. 
Explainable Preoperative Automated Machine Learning 
Prediction Model for Cardiac Surgery-Associated Acute 
Kidney Injury. J Clin Med 2022;11:6264.

13. Nagy M, Onder AM, Rosen D, et al. Predicting pediatric 
cardiac surgery-associated acute kidney injury using 
machine learning. Pediatr Nephrol 2024;39:1263-70.

14. Li Q, Lv H, Chen Y, et al. Development and Validation 
of a Machine Learning Predictive Model for Cardiac 
Surgery-Associated Acute Kidney Injury. J Clin Med 
2023;12:1166.

15. Fan R, Qin W, Zhang H, et al. Machine learning in the 
prediction of cardiac surgery associated acute kidney 
injury with early postoperative biomarkers. Front Surg 
2023;10:1048431.

https://jtd.amegroups.com/article/view/10.21037/jtd-24-711/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-24-711/dss
https://jtd.amegroups.com/article/view/10.21037/jtd-24-711/dss
https://jtd.amegroups.com/article/view/10.21037/jtd-24-711/prf
https://jtd.amegroups.com/article/view/10.21037/jtd-24-711/prf
https://jtd.amegroups.com/article/view/10.21037/jtd-24-711/coif
https://jtd.amegroups.com/article/view/10.21037/jtd-24-711/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Song et al. Machine learning for OPCABG-associated AKI4542

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2024;16(7):4535-4542 | https://dx.doi.org/10.21037/jtd-24-711

16. Brown JK, Shaw AD, Mythen MG, et al. Adult Cardiac 
Surgery-Associated Acute Kidney Injury: Joint Consensus 
Report. J Cardiothorac Vasc Anesth 2023;37:1579-90.

17. Khwaja A. KDIGO clinical practice guidelines for acute 
kidney injury. Nephron Clin Pract 2012;120:c179-84.

18. Bell J, Sartipy U, Holzmann MJ, et al. The Association 
Between Acute Kidney Injury and Mortality After 
Coronary Artery Bypass Grafting Was Similar in Women 
and Men. J Cardiothorac Vasc Anesth 2022;36:962-70.

19. Chan MJ, Lee CC, Chen SW, et al. Effect of different 
surgical type of coronary artery bypass grafting on kidney 
injury: A propensity score analysis. Medicine (Baltimore) 
2017;96:e8395.

20. Yue Z, Yan-Meng G, Ji-Zhuang L. Prediction model for 
acute kidney injury after coronary artery bypass grafting: a 
retrospective study. Int Urol Nephrol 2019;51:1605-11.

21. Chen JJ, Chang CH, Wu VC, et al. Long-Term Outcomes 
of Acute Kidney Injury After Different Types of Cardiac 
Surgeries: A Population-Based Study. J Am Heart Assoc 
2021;10:e019718.

22. Wang Y, Bellomo R. Cardiac surgery-associated acute 
kidney injury: risk factors, pathophysiology and treatment. 
Nat Rev Nephrol 2017;13:697-711.

23. Biteker M, Dayan A, Tekkeşin Aİ, et al. Incidence, risk 
factors, and outcomes of perioperative acute kidney 
injury in noncardiac and nonvascular surgery. Am J Surg 
2014;207:53-9.

24. Ortega-Loubon C, Fernández-Molina M, Carrascal-
Hinojal Y, et al. Cardiac surgery-associated acute kidney 
injury. Ann Card Anaesth 2016;19:687-98.

25. Mao H, Katz N, Ariyanon W, et al. Cardiac surgery-
associated acute kidney injury. Cardiorenal Med 
2013;3:178-99.

26. Ejmalian A, Aghaei A, Nabavi S, et al. Prediction of Acute 

Kidney Injury After Cardiac Surgery Using Interpretable 
Machine Learning. Anesth Pain Med 2022;12:e127140.

27. Sear JW. Kidney dysfunction in the postoperative period. 
Br J Anaesth 2005;95:20-32.

28. Sun LY, Chung AM, Farkouh ME, et al. Defining an 
Intraoperative Hypotension Threshold in Association with 
Stroke in Cardiac Surgery. Anesthesiology 2018;129:440-7.

29. Vives M, Hernandez A, Parramon F, et al. Acute kidney 
injury after cardiac surgery: prevalence, impact and 
management challenges. Int J Nephrol Renovasc Dis 
2019;12:153-66.

30. Lee HC, Yoon HK, Nam K, et al. Derivation and 
Validation of Machine Learning Approaches to Predict 
Acute Kidney Injury after Cardiac Surgery. J Clin Med 
2018;7:322.

31. Petrosyan Y, Mesana TG, Sun LY. Prediction of acute 
kidney injury risk after cardiac surgery: using a hybrid 
machine learning algorithm. BMC Med Inform Decis Mak 
2022;22:137.

32. Tseng PY, Chen YT, Wang CH, et al. Prediction of the 
development of acute kidney injury following cardiac 
surgery by machine learning. Crit Care 2020;24:478.

33. Adhikari L, Ozrazgat-Baslanti T, Ruppert M, et al. 
Improved predictive models for acute kidney injury with 
IDEA: Intraoperative Data Embedded Analytics. PLoS 
One 2019;14:e0214904.

34. Saria S, Rajani AK, Gould J, et al. Integration of early 
physiological responses predicts later illness severity in 
preterm infants. Sci Transl Med 2010;2:48ra65.

35. Huen SC, Parikh CR. Predicting acute kidney injury after 
cardiac surgery: a systematic review. Ann Thorac Surg 
2012;93:337-47.

(English Language Editor: J. Jones)

Cite this article as: Song Y, Zhai W, Ma S, Wu Y, Ren M, 
Van den Eynde J, Nardi P, Pang PYK, Ali JM, Han J, Guo Z. 
Machine learning-based prediction of off-pump coronary artery 
bypass grafting-associated acute kidney injury. J Thorac Dis 
2024;16(7):4535-4542. doi: 10.21037/jtd-24-711


