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Introduction

Globally, lung cancer poses a significant threat as a 

malignant tumor (1), with lung adenocarcinoma (LUAD) 

patients enduring a distressing 5-year survival rate below 
15% due to late-stage diagnosis (2,3). Tumor heterogeneity 
within and across LUAD cases presents a substantial 
diagnostic obstacle, complicating treatment success (4). 
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While the classification based on tissue features helps 
tailor LUAD treatments, it falls short in unraveling 
the complexities of LUAD pathogenesis and treatment 
decisions (5). Hence, there is a pressing need to delve into 
the mechanisms of LUAD tumorigenesis, identify effective 
biomarkers, and pinpoint potential therapeutic targets for 
more precise prognostic forecasts.

Glucocorticoids (GCs), a class of corticosteroids 
within the steroid hormone family, have been extensively 
utilized in oncology support and palliative care (6). 
Notably, in LUAD, studies have highlighted the impact 
of GC medicines like dexamethasone (DEX) (7) and 
prednisolone (8) on manipulating LUAD cell proliferation 
through various molecular pathways. The activation of the 
glucocorticoid receptor (GR) by GCs has been associated 
with inducing dormancy in lung cancer cells, thus 
impeding proliferation (9). This underscores the potentially 
pivotal role of GCs in LUAD onset and progression, yet the 
exploration of GCs-associated prognostic genes in LUAD is 
still replete with many unknowns.

Our study utilized unsupervised clustering analysis to 
categorize LUAD subtypes based on distinct glucocorticoid-
related gene (GCG) characteristics. By scrutinizing subtype 
gene interactions, we identified candidate genes linked 
to prognosis and devised a potential LUAD prognostic 
model.  Delving into signaling pathways,  immune 
microenvironments, and gene mutation frequencies among 
high- and low-risk LUAD patient cohorts could provide 
valuable insights for tailoring immunotherapy strategies. 
The prospect of targeting signature genes with drugs 
opens new avenues for therapeutic research. Overall, 

this study expands our knowledge of GCGs in LUAD, 
offering insights into prognostic evaluation and further 
study of immunotherapy in LUAD patients. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-24-1083/rc).

Methods

Data acquisition

A total of 59 normal and 541 LUAD samples (including 
gene expression profiles and clinical data such as age, 
gender, tumor grade, and tumor node metastasis (TNM) 
staging) were sourced from The Cancer Genome Atlas 
(TCGA) database (https://portal.gdc.cancer.gov/). The 
validation set was sourced from the GSE50081 dataset at 
Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.
nih.gov/). From GeneCards (https://www.genecards.org/), 
783 GCGs were obtained, filtered by a relevance score 
above 2. The study was conducted in accordance with the 
Declaration of Helsinki and its subsequent amendments.

Identification of LUAD subtypes associated with GCGs 
characteristics

Through univariate Cox regression analysis, we identified 
GCGs that correlate with LUAD patient survival in the 
training set. Then, according to the expression level of 
GCGs, we used the ConsensusClusterPlus R package to 
determine the optimal cluster number and conducted 1,000 
repetitions to ensure the classification stability. The survival 
status differences between LUAD subtypes post-clustering 
were analyzed to gauge the classification efficacy of GCGs.

Construction and validation of LUAD prognostic model 

The edgeR R package was applied for differential analysis 
to identify differentially expressed genes (DEGs) between 
LUAD subtypes cluster 1 and cluster 2 [false discovery rate 
(FDR) <0.05, logFC >1]. A protein-protein interaction (PPI) 
network for the DEGs was created using the Search Tool 
for the Retrieval of Interacting Genes/Proteins (STRING) 
database, where only interactions with a confidence score 
of ≥0.7 were included. Further, univariate Cox regression 
analysis was used to screen for genes that were significantly 
associated with LUAD survival. Least absolute shrinkage 
and selection operator (LASSO) penalization from the 
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glmnet R package was employed to streamline the list of 
survival-related genes, with parameter λ optimized by 
10-fold cross-validation. The survminer R package then 
performed multivariate Cox regression analysis on the 
Lasso-selected genes to construct the definitive LUAD 
prognostic model. Patients were divided into high- and 
low-risk groups based on the median risk score. The 
distribution of risk scores, survival status, and the expression 
differences of characteristic genes across the risk groups 
were illustrated. The Kaplan-Meier survival curve assessed 
the disparity in survival rates between the groups. The 
GSE50081 samples served as a validation cohort to further 
substantiate its prognostic validity. The R package timeROC 
was used to generate receiver operating characteristic (ROC) 
curves and calculate the area under the curve (AUC) values 
to further evaluate the predictive efficacy of the prognostic 
model.

Construction and validation of a prognostic nomogram

To confirm the capability of the model’s risk scores in 
forecasting LUAD prognosis, we conducted univariate and 
multivariate Cox regression analyses on clinical attributes 
of LUAD patients, including age, gender, TNM, and stage, 
as well as the risk scores. The clinical factors identified 
by the prognostic model and multivariate Cox regression 
analysis were then integrated, using the R package rms 
to build a nomogram to predict 1-, 2-, and 3-year overall 
survival. Decision curve analysis (DCA) curves were drawn 
to evaluate the effectiveness of the nomogram. ROC curves 
were plotted to evaluate the clinical potential of the model. 
Calibration curves were used to assess the deviation between 
the nomogram and the actual value (1, 2, and 3 years).

Detection and enrichment analysis of DEGs

With the edgeR R package, differential expression analysis 
was carried out on the high- and low-risk groups from the 
training set to identify DEGs (FDR <0.05, logFC >1). Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis for these DEGs 
was conducted using the clusterProfiler R package to explore 
their biological functions. The enrichment results were 
graphically presented using the enrichplot R package.

Immune microenvironment analysis

The single sample gene set enrichment analysis (ssGSEA) 

method guided us to conduct a differential analysis of 
immune cell infiltration and immune-related functions 
between risk groups employing the gene set variation 
analysis (GSVA) R package. The expression levels of 
human leukocyte antigen (HLA) related genes and 
immune checkpoint molecules were statistically compared 
between the groups. The Tumor Immune Dysfunction 
and Exclusion (TIDE) algorithm was applied to assess the 
sensitivity of LUAD patients with different risk levels to 
immunotherapy. The results were visualized by violin plots 
following Wilcoxon testing.

Tumor mutation analysis

The maftools R package was used to analyze and compare 
the mutation, status, types, single nucleotide variant (SNV) 
classes, and mutation rates in the high- and low-risk groups 
of LUAD patients, based on SNV mutation data from 
TCGA, and to visualize the top 20 mutated genes in a gene 
waterfall plot.

Drug prediction

The CellMiner database (https://discover.nci.nih.gov/
cellminer/home.do) was employed to forecast potential 
drugs that may act on the genes of the prognostic model, 
applying the half maximal inhibitory concentration (IC50) as 
the gauge for drug sensitivity.

Statistical analysis

All statistical analyses were performed using R (version 4.0.2; 
http://www.r-project.org/about.html). Pearson correlation 
coefficient was used to study the correlation between 
risk score and immune infiltration level, immunotherapy 
response, and TIDE score. Univariate Cox regression 
analysis, multivariate Cox regression analysis, and LASSO 
regression analysis were used to screen model genes. 
Kaplan-Meier analysis was used to assess the association 
between risk scores and survival. ROC curves were used to 
verify the predictive efficiency of the model. P<0.05 was 
considered to indicate a statistically significant difference.

Results

Identification and survival analysis of LUAD subtypes

From 783 GCGs, 118 genes were identified as significantly 
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associated with LUAD prognosis via univariate Cox 
regression analysis (table available at https://cdn.amegroups.
cn/static/public/jtd-24-1083-1.xlsx). Subsequently, 
unsupervised clustering based on GCG expression among 
LUAD samples led to two subtypes, cluster 1 (n=326) and 
cluster 2 (n=172) (Figure 1A). The survival analysis showed 
a significant divergence in survival status between these 
two subtypes (P=4.729×10−6) (Figure 1B), with a higher 
survival rate observed in cluster 1. This demonstrated the 
validity of GCG-based LUAD subtype classification for 
subsequent research.

Assessment of prognostic model predictive capacity

Differential expression analysis of the cluster 1 and cluster 2 
subtypes led to the discovery of 403 DEGs (table available 
at https://cdn.amegroups.cn/static/public/jtd-24-1083-
2.xlsx). A PPI network was then constructed (number of 
nodes: 401, number of edges: 223, average node degree: 
1.11, avg. local clustering coefficient: 0.279, expected 
number of edges: 41, PPI enrichment P value: <1.0e−16), 
where 159 DEGs were found to interact (Figure 2, table 
available at https://cdn.amegroups.cn/static/public/jtd-24-
1083-3.xlsx). These genes were to be considered for the 
prognostic model. Following univariate Cox regression 
analysis and tuning of the Lasso coefficient with parameter 
λ, 17 genes associated with LUAD survival were identified 
(Figure 3A,3B). A prognostic model with 9 genes was then 

established through multivariate Cox regression (Figure 3C). 
The model formula is as follows:

0.149281745* 0.137673074*
0.087378951* 0.05675468*
0.081689231* 0.048219114*
0.125469274* 0.095176458*
0.101370953*

Riskscore CLCA1 CYP17 A1
GRIA2 IGF2BP1
IGFBP1 NTSR1
RPE65 VGF
WNT16

= − −
− +
+ +
+ +
−

	
[1]

Our research posited a strong correlation between the 
nine characteristic genes and the prognosis of LUAD. 
By evaluating the expression levels of these genes, we 
ascertained the prognostic risks for LUAD patients within 
the training cohort, subsequently stratifying them into 
high- and low-risk groups (Figure 4A). An assessment of 
the survival status within these risk groups indicated a 
higher mortality rate for the high-risk group (Figure 4B). 
Furthermore, the expression patterns of the prognostic 
genes exhibit marked variations between the two groups 
(Figure 4C). Employing Kaplan-Meier survival analysis, 
we concluded that the survival rate for the high-risk 
group was notably lower than that of the low-risk group 
(P=5.946×10−10) (Figure 4D). To determine the validity of 
the prognostic model, we generated ROC curves for 1, 3, 
and 5 years, obtaining AUC values of 0.74, 0.74, and 0.72, 
respectively, all above 0.7 (Figure 4E). This suggests that 
the model has a robust predictive capacity for LUAD 
prognosis. Moreover, we further tested its accuracy 
using the GSE50081 validation set. The validation set 
mirrored the training set in terms of survival status and 

Figure 1 Identification of LUAD subtypes and evaluation of the typing ability of GCGs. (A) LUAD clustering results based on GCG 
expression; (B) survival analysis of the two subtypes after clustering. GCGs, glucocorticoids-related genes; LUAD, lung adenocarcinoma.
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Figure 2 PPI network of 159 DEGs in clusters 1 and 2. DEGs, differentially expressed genes; PPI, protein-protein interaction.

the characteristic gene expression of the high- and low-
risk groups (Figure 4F-4H). The Kaplan-Meier survival 
curve demonstrated that the survival rate in the high-
risk group is still significantly lower (P=1.64×10−4) 
(Figure 4I). The ROC curves displayed AUC values of 
0.71, 0.71, and 0.76 for 1, 3, and 5 years, respectively, 
indicating the excellent forecasting ability of the 
prognostic model (Figure 4J). In conclusion, the model, 

performing superior forecasting for LUAD prognosis, 
can be utilized in further research.

Independent prognosis value of the risk score in the 
prognostic model

To verify whether the risk score could independently 
foretell the prognosis of LUAD patients, we employed 
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univariate and multivariate Cox regression analyses to 
assess the clinical features and risk scores of LUAD samples 
(Figure 5A,5B). The findings indicated that the risk score 
is an independent predictor of LUAD patient prognosis 
(P<0.001). Then we developed a nomogram from the 
prognostic model to project the 1-, 2-, and 3-year clinical 

outcomes for LUAD patients (Figure 5C). Calibration curve 
analysis showed a strong correlation between the predicted 
and actual survival rates (Figure 5D). suggesting that our 
nomogram precisely predicted LUAD patient survival 
rates. The ROC curves revealed the highest AUC value for 
the risk score, at 0.764 (Figure 5E), indicating its superior 

Figure 3 Construction of the prognostic model for LUAD. (A) Coefficient distribution chart from ten-fold cross-validation for the LASSO 
model, with λ as the tuning parameter; (B) LASSO coefficient curve; (C) forest plot from the multivariate Cox regression analysis. *, P<0.05; 
**, P<0.01. AIC, Akaike information criterion; CI, confidence interval; LASSO, least absolute shrinkage and selection operator; LUAD, lung 
adenocarcinoma.
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Figure 4 Evaluation and validation of LUAD prognostic model. (A) Risk score distribution, (B) survival conditions, (C) characteristic 
gene expression, (D) survival curves, and (E) ROC curves for the high- and low-risk groups in the TCGA training cohort. (F) Risk score 
distribution, (G) survival conditions, (H) characteristic gene expression, (I) survival curves, and (J) ROC curves for the high- and low-
risk groups in the GSE50081 validation cohort. AUC, area under the curve; LUAD, lung adenocarcinoma; ROC, receiver operating 
characteristic; TCGA, The Cancer Genome Atlas.
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Figure 5 The independent prediction of the prognostic model. (A) Forest plot from univariate Cox regression analysis with combined 
clinical features and risk scores. (B) Forest plot from multivariate Cox regression analysis with integrated clinical features and risk scores. 
(C) Nomogram created based on clinical features and risk scores. (D) Calibration plots for 1-, 2-, and 3-year predictions by the nomogram. 
(E) ROC curves for the assessment of clinical features and the risk score. (F) DCA curves for the nomograms at 1, 2, and 3 years. AUC, area 
under the curve; CI, confidence interval; DCA, decision curve analysis; ROC, receiver operating characteristic.

prognostic performance in comparison to other clinical 
characteristics. The DCA curves suggested that the model 
may perform well in clinical practice (Figure 5F). These 
findings support the idea that the 9 genes in the prognostic 
model can act as independent prognostic factors for LUAD 
patients.

Examination of the underlying biological functions in 
LUAD patients with different risk levels

A differential expression analysis was executed between the 
risk groups, culminating in the identification of 1,129 DEGs 
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jtd-24-1083-4.xlsx). An enrichment analysis of DEGs was 
performed to elucidate the variances in signaling pathways 
between two risk cohorts. GO enrichment analysis showed 
that these DEGs were mainly concentrated in GO entries 
such as cilium-dependent cell motility, ion channel complex, 
structural constituent of chromatin, and neurotransmitter 
receptor activity (Figure 6A). Similarly, KEGG enrichment 
analysis showed that DEGs are mainly associated with 
pathways like neuroactive ligand-receptor interaction, 
systemic lupus erythematosus, neutrophil extracellular trap 
formation, and cyclic adenosine monophosphate (cAMP) 
signaling pathway (Figure 6B). These findings imply that the 
DEGs within the high- and low-risk groups predominantly 
participate in biological processes related to cell signaling 
and metabolism.

Immune profiling in LUAD patients with varying risk 
values

Using ssGSEA, we found a marked divergence in the 
immunological profiles between the high- and low-
risk patient cohorts. Specifically, the high-risk cohort 

demonstrated an elevated presence of Tfh (P=0.002) 
and Th1 cells (P=0.04), contrasting with a diminished 
presence of aDCs (P=2.56×10−8), iDCs (P=0.001), mast 
cells (P=1.55×10−4),  and neutrophils (P=3.27×10−4)  
(Figure 7A). Concurrently, there was a discernible variation 
in the enrichment of immunological pathways, with 
the high-risk group exhibiting increased expression in 
functions such as APC_co_stimulation (P=0.02), MHC_
class_I (P=8.18×10−5), parainflammation (P=0.003), 
and Inflammation.promoting (P=0.002), and decreased 
expression in HLA (P=0.003) and Type_II_IFN_Response 
(P=6.79×10−4) (Figure 7B). The statistical profiles of HLA-
related gene expression further backed up the findings. 
Specifically, the genes HLA-A (P=0.03) and HLA-G 
(P=0.002) demonstrated elevated expression within the 
high-risk cohort, while the genes HLA-DMA (P=0.003), 
HLA-DMB (P=0.003), HLA-DOA (P=0.003), HLA-DOB 
(P=0.02), HLA-DPA1 (P=0.02), HLA-DPB1 (P=0.02), HLA-
DQB2 (P=0.001), HLA-DRA (P=0.02), and HLA-DRB5 
(P=0.002) were highly expressed in the low-risk cohort 
(Figure 7C). Subsequent analysis of immune checkpoints 
showed a pronounced upregulation of LAG3 (P=0.003), 

Figure 6 Examination of the underlying biological functions in LUAD patients in different risk groups. (A) GO enrichment plot for DEGs 
between the high- and low-risk groups. (B) KEGG enrichment plot for DEGs between the high- and low-risk groups. BP, biological 
process; cAMP, cyclic adenosine monophosphate; CC, cellular component; DEGs, differentially expressed genes; GO, Gene Ontology; 
LUAD, lung adenocarcinoma; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 7 Immune profiling in LUAD patients with varying risk values. (A) Infiltration levels of immune cells in both risk groups.  
(B) Expression levels of immune cell functions in both risk groups. (C) Expression of HLA-related genes in both risk groups. (D) Expression 
of immune checkpoints in the high- and low-risk groups. (E) TIDE scores between the high- and low-risk groups. ***, P<0.001. aDCs, 
activated dendritic cells; APC, antigen-presenting cell; CCR, C-C chemokine receptor; iDCs, immature dendritic cells; MHC, major 
histocompatibility complex; NK, natural killer cells; IFN, interferon; HLA, human leukocyte antigen; LUAD, lung adenocarcinoma; pDCs, 
plasmacytoid dendritic cells; ssGSEA, single sample gene set enrichment analysis; TIDE, Tumor Immune Dysfunction and Exclusion; TIL, 
tumor-infiltrating lymphocytes.
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PDCD1 (P=0.002), TMIGD2 (P=0.04), and CEACAM19 
(P=4.90×10−3) in the high-risk cohort, and conversely, BTLA 
(P=0.03) and CD40LG (P=2.72×10−4) exhibited increased 
expression within the low-risk cohort (Figure 7D). Potential 
divergence in immunotherapy responsiveness was revealed. 
The TIDE algorithm also helped us uncover a higher 
immune evasion rate in the high-risk group (P<0.001) 
(Figure 7E). Overall, these results suggested the need for 
tailored immunotherapy for LUAD patients with varying 
risk levels.

Mutation profiling

We investigated genetic mutation variances between 
high- and low-risk groups via maftools R, identifying 

Missense_Mutations as the most frequent in both groups, 
with a cytosine(C)-to-adenine(A) transition trend in SNV 
nucleotide sites (Figure 8A,8B). The top 20 mutated genes 
were congruent between risk groups (Figure 8C,8D). 
Notably, TTN exhibited the highest mutation frequency in 
the high-risk group at 57%, while TP53 showed a mutation 
rate of 45%, which was the highest in the low-risk group. 
These mutation rate variances might be responsible for the 
varying risk profiles in LUAD patients.

Potential drug prediction

We used CellMiner database to pinpoint drugs for 
prognostic gene markers. The gene VGF showed the highest 
drug sensitivity. Thus, we spotlighted the top nine drugs 

Figure 8 Mutation profiling in high- and low-risk LUAD patient groups. (A,B) A statistical overview of mutation types and their 
distribution in the (A) high-risk and (B) low-risk groups. (C,D) Top 20 mutation types and their prevalence in the (C) high-risk and (D) low-
risk groups. LUAD, lung adenocarcinoma.
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that exhibited a significant positive correlation with the VGF 
gene (P<0.001), namely Dabrafenib (Cor =0.641), ARQ-
680 (Cor =0.621), PLX-4720 (Cor =0.614), Vemurafenib  
(Cor =0.604),  BGB-283 (Cor =0.576),  PLX-8394  
(Cor =0.573), MLN-2480 (Cor =0.572), TAK-632  
(Cor =0.569), and GDC-0994 (Cor =0.549) (Figure 9A). 
Further, we compared the drug sensitivity in the high and 
low expression groups of VGF, with the measure IC50. 
BGB-283 demonstrated the most pronounced difference 

in IC50 values between the high and low VGF expression 
groups (P<0.05) (Figure 9B). Overall, BGB-283 emerges as 
a candidate drug for VGF-targeted LUAD therapy.

Discussion

The potent heterogeneity of LUAD leads to its intricate 
pathogenic mechanisms. Classification of LUAD based 
on histological features has facilitated the development 
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Figure 9 Prediction of potential drugs targeting the gene VGF. (A) Sensitivity analysis of the top 9 drugs targeting the gene VGF. (B) IC50 
values of the 9 drugs in high and low expression groups of VGF. ns, P>0.05; *, P<0.05; **, P<0.01; ***, P<0.001. VGF, nerve growth factor 
inducible; IC50, inhibitory concentration.
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of targeted treatment strategies, yet the prognostic 
prediction of LUAD is still elusive (10-12), necessitating 
further refinement. The synergy between GCs and their 
receptors is a key regulatory mechanism for the body’s 
ecological balance, with the lung’s normal maturation being 
intrinsically tied to the GCs-GR axis (13,14). Previous 
research also highlighted the role of the GCs-GR axis in the 
progression of lung cancer and its resistance to treatment. 
Sasaki et al. have uncovered the involvement of GCs and 
GR pathway in LUAD recurrence and prognosis, and also 
identified the downstream regulatory genes, NDRG-1, and 
the protein kinase SGK-1, as key prognostic factors for 
LUAD (15). These insights point to a strong correlation 
between the GCs-GR pathway and LUAD, potentially 
aiding in LUAD prognostic research.

This research, based on the expression of GCGs, 
grouped LUAD patients into two prognostic subtypes—
cluster 1 (higher survival rates) and cluster 2 (lower survival 
rates), thereby highlighting the prognostic significance of 
the GR in LUAD. Following a differential analysis of these 
subtypes, we developed a prognostic model, revealing an 
association between LUAD prognosis and 9 specific genes: 
CLCA1, CYP17A1, GRIA2, IGFBP1, IGF2BP1, NTSR1, 
RPE65, VGF, and WNT16. Notably, CLCA1, identified as 
a secreted autolytic protein, modulates calcium-dependent 
chloride channels, thereby implicating itself in cellular 
processes such as proliferation, migration, and metastasis 
(16). Studies have substantiated the modulatory role of 
TMEM16A, a calcium-gated chloride channel protein, 
in tumorigenesis and invasiveness of lung cancer cells, 
with CLCA1 identified as a direct modulatory agent of 
TMEM16A (17,18). The study of CLCA1 in lung cancer 
remains unexplored, offering a promising avenue for future 
research into LUAD pathogenesis and development. 
CYP17A1, a versatile hydroxylase within the cytochrome 
P450 enzyme family, primarily governs the biosynthesis of 
sex hormones, thereby influencing neoplastic conditions 
such as prostate and breast cancer (19,20). Zhang et al. (21)  
identified CYP17A1 as a potential candidate gene for non-
small cell lung cancer (NSCLC) susceptibility. However, 
its polymorphism showed no association with NSCLC 
development in Asian populations. Recent findings suggest 
that low CYP17A1 expression in high-risk LUAD cohorts 
acts as a protective factor (22), aligning with the outcomes 
of this investigation. GRIA2, encoding a subunit of the 
AMPA-type ionotropic glutamate receptors, is recognized 
as a neurotransmitter receptor reliant on lung and breast 

cancer cells (23). IGFBP1, a potent regulator of insulin-
like growth factor (IGF) activity, influences cancer 
progression by modulating essential cellular processes such 
as proliferation, migration, invasion, and apoptosis (24).  
Elevated IGFBP1 levels have been linked to poorer 
LUAD prognosis (25). In vivo and in vitro experimental 
data demonstrate that IGFBP1 suppression inhibits LUAD 
cell proliferation, migration, and epithelial-mesenchymal 
transition (EMT) capabilities, suppressing tumor growth (26). 
Cai et al. (27) demonstrated that IGFBP1 maintains cancer 
cell survival and drives tumor metastasis by regulating 
the phosphorylation and activity of SOD2 in lung cancer. 
NTSR1, a G protein-coupled receptor, participates in 
neurotransmission and metabolic processes through its 
interaction with neurotensin peptides (28). As upregulated 
in LUAD, NTSR1 stimulates EMT and cell metastasis 
through the Wnt/β-catenin pathway (29). Recently, Chen  
et al. (30) elucidated that NTSR1 facilitates the migration and 
invasiveness of pulmonary oncocytes via the reconfiguration 
of the cytoskeletal architecture. RPE65, an enzyme with 
retinol isomerase activity, catalyzes the conversion of all-
trans-retinyl esters to 11-cis-retinol (31). Limited studies 
have addressed the role of RPE65 in lung cancer. In a 
comprehensive pan-cancer analysis, Keshavarz-Rahaghi  
et al. (32) identified RPE65 as a genetic trait linked to the loss 
of p53 function. More recently, Zhou et al. (33) highlighted 
RPE65 as a potential prognostic indicator for LUAD 
by examining crucial smoking-related genes in LUAD, 
correlating it with poorer outcomes. Hence, in conjunction 
with our findings, RPE65 emerges as a novel marker 
for LUAD, yet further experimental validation remains 
imperative. VGF, as a neurotrophic factor, is involved in 
the regulation of EGFR-TKI resistance in LUAD (34,35).  
Li et al. (36) uncovered through bioinformatics that VGF 
serves as a standalone prognostic indicator in forecasting 
the overall survival of NSCLC patients. Additionally, 
Shi et al. (37) demonstrated that METTL3 enhances the 
malignancy of LUAD cells by controlling VGF through 
transcriptional regulation (histone modification) and post-
transcriptional modification (m6A). WNT16 is a member 
of the WNT ligand family, and the abnormal expression 
of WNT ligands plays a crucial role in the etiology and 
progression of various malignancies, inclusive of NSCLC 
and colorectal cancer (38,39). In summary, the nine 
identified GCGs in this study likely contribute to LUAD 
onset and progression, potentially serving as biomarkers. 
However, further experimental investigations are crucial to 
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elucidate the specific roles of these genes in LUAD.
A novel modality in oncology by stimulating the human 

immune system, immunotherapy marks a breakthrough 
in the therapeutics of LUAD (40). In this context, 
we investigated the potential therapeutic benefits of 
immunotherapy among LUAD patients stratified by 
risk. Analysis of immune cell infiltration profiles revealed 
elevated expression of Th1 cells within the high-risk cohort, 
in contrast to augmented expression of aDCs and iDCs 
within the low-risk cohort. It is well-documented that 
T cells are the primary targets in the immunotherapy of 
lung cancer (41). Th1 cells, a subset of T cells, are known 
to secrete tumor necrosis factor (TNF)-α, interleukin 
(IL)-2, and interferon-gamma (IFN-γ), cytokines that are 
instrumental in mounting an effective anti-tumor immune 
response (42). Contrary to this, Ito et al. (43) observed 
in tumor-infiltrating lymphocytes (TIL) of lung cancer 
patients that Th1 cells were less effective in producing 
IFN-γ, suggesting a potential suppression of Th1 cell 
function in the context of lung malignancies. Dendritic 
cells (DCs), endowed with exceptional antigen-presenting 
efficacy, are capable of eliciting antigen-specific T cell 
reactions and thus rendered as pivotal vaccine targets in 
lung cancer immunotherapy (44), which comes as a pleasant 
relief for low-risk LUAD population. Advanced research 
has uncovered remarkable variations in the immune 
functional profiles across LUAD patients with diverse risk 
stratifications. Pulmonary inflammation, instigated by 
an array of stressors including smoking and particulates, 
is a contributing factor in the genesis of lung cancer, 
and Kraemer et al. have discerned a marked decrement 
in the cytotoxic T cell infiltration within lung cancer 
specimens with heightened inflammation scores (45,46). 
Meanwhile, inflammatory episodes are known to induce 
the upregulation of major histocompatibility complex 
(MHC) class I within pulmonary epithelial cells, thereby 
augmenting the immunosurveillance against malignant 
lung cells (47), elucidating why there existed heightened 
expression of immune functions such as Inflammation.
promoting, MHC class I, and parainflammation in high-risk 
LUAD patients with lower survival rates. Immune evasion 
is a defining characteristic of cancer. It has been established 
that the attenuation of HLA allele expression may 
precipitate a reduction in antigen presentation, encouraging 
the immune evasion and metastatic dissemination of 
lung cancer (48,49). Thus, the pronounced expression of 
numerous HLA genes in the low-risk group might curtail 

the immune evasive mechanisms of pulmonary oncogenic 
genes. The TIDE algorithmic assessment corroborated 
this proposition. Intriguingly, the high-risk group persists 
in the heightened expression of HLA-A and HLA-G genes, 
potentially accounting for the marked variance in immune 
checkpoint expression between the groups. In essence, 
this prognostic model may inform the immunotherapeutic 
strategies for LUAD.

We further explored the genetic mutation profiles across 
the risk cohorts, uncovering notable similarities between 
them. Utilizing the CellMiner database to predict drugs 
targeting the signature gene VGF, we ventured that BGB-
283 is a promising candidate for LUAD therapeutics. Yet, 
the mechanism of action of the drug and its treatment 
effects require further investigation. 

Conclusions

Collectively, our research harnessed bioinformatics to 
discern two LUAD subtypes characterized by distinct 
GCGs, clusters 1 and 2, and subsequently developed 
a robust LUAD prognostic model predicated on the 
divergences among these subtypes. This model holds 
immense value in guiding LUAD immunotherapy. 
Targeting specific genes and pathways can enhance 
treatment outcomes for LUAD patients. By utilizing 
predictive models, we can evaluate risk scores for early 
screening and monitoring of high-risk groups. Notably, 
our findings suggest that patients in the low-risk category 
are more responsive to immune therapy. Therefore, the 
implementation of a risk assessment model by our research 
institute can aid in tailoring personalized treatment 
decisions for LUAD, improving clinical management. 
Furthermore, customizing immunotherapy and medication 
selection can boost medical service efficiency and quality, 
minimizing resource waste and lowering treatment 
costs. Yet, there are limitations to this study that warrant 
attention: (I) the study is limited by a restricted sample pool 
and did not include biological experiments to confirm the 
accuracy of LUAD subtype predictions and classifications. 
(II) The exact molecular mechanisms by which GCGs 
regulate LUAD are not delineated, which will be the 
primary focus in our next phase of research.
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