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Background: Several studies have shown that glucocorticoid-related genes (GCGs) play a crucial role in
cancer. However, the mechanism of GCGs in lung adenocarcinoma (LUAD) is not fully understood. This
study aimed to identify distinct subtypes of LUAD by integrating GCGs and to develop prognostic models
for precise prognosis prediction and immunotherapy guidance.

Methods: In this study, sample data of LUAD were collected from The Cancer Genome Atlas (TCGA)
database, and unsupervised clustering was used to identify LUAD subtypes with different GCGs characteristics.
Survival-related genes were screened by differental expression analysis and protein-protein interaction (PPI)
network analysis. After that, the least absolute shrinkage and selection operator (LASSO) combined with Cox
regression analysis was used to establish the prognosis model. Differences in the immune microenvironment of
different risk groups were analyzed, and Tumor Immune Dysfunction and Exclusion (TIDE) was used to predict
the response of patients to immunotherapy. Finally, the CellMiner database was used to predict potential drugs.
Results: Two subtypes of LUAD were identified, namely cluster 1 (high survival rate) and cluster 2 (low
survival rate). A prognostic model was constructed based on 9 characteristic genes, including CLCAI,
CYP17A1, GRIA2, IGFBPI, IGF2BP1, NTSRI, RPE6S, VGF, and WNTI16, and the prognosis of LUAD
patients was positively predicted. There were differences in the immune microenvironment of different
risk LUAD patients, and high-risk LUAD patients may benefit less from immunotherapy. BGB-283 was a
candidate for LUAD targeting VGFE.

Conclusions: Our study elucidates the impact of GCGs on LUAD prognosis and immune responses,

offering insights for prognostic forecasting and immunotherapeutic strategies for LUAD patients.
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Introduction patients enduring a distressing 5-year survival rate below

15% due to late-stage diagnosis (2,3). Tumor heterogeneity
Globally, lung cancer poses a significant threat as a within and across LUAD cases presents a substantial
malignant tumor (1), with lung adenocarcinoma (LUAD) diagnostic obstacle, complicating treatment success (4).
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While the classification based on tissue features helps
tailor LUAD treatments, it falls short in unraveling
the complexities of LUAD pathogenesis and treatment
decisions (5). Hence, there is a pressing need to delve into
the mechanisms of LUAD tumorigenesis, identify effective
biomarkers, and pinpoint potential therapeutic targets for
more precise prognostic forecasts.

Glucocorticoids (GCs), a class of corticosteroids
within the steroid hormone family, have been extensively
utilized in oncology support and palliative care (6).
Notably, in LUAD, studies have highlighted the impact
of GC medicines like dexamethasone (DEX) (7) and
prednisolone (8) on manipulating LUAD cell proliferation
through various molecular pathways. The activation of the
glucocorticoid receptor (GR) by GCs has been associated
with inducing dormancy in lung cancer cells, thus
impeding proliferation (9). This underscores the potentially
pivotal role of GCs in LUAD onset and progression, yet the
exploration of GCs-associated prognostic genes in LUAD is
still replete with many unknowns.

Our study utilized unsupervised clustering analysis to
categorize LUAD subtypes based on distinct glucocorticoid-
related gene (GCQG) characteristics. By scrutinizing subtype
gene interactions, we identified candidate genes linked
to prognosis and devised a potential LUAD prognostic
model. Delving into signaling pathways, immune
microenvironments, and gene mutation frequencies among
high- and low-risk LUAD patient cohorts could provide
valuable insights for tailoring immunotherapy strategies.
The prospect of targeting signature genes with drugs
opens new avenues for therapeutic research. Overall,
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Key findings
* A prognostic risk model based on glucocorticoid-related genes
(GCGs) was constructed.

What is known and what is new?

® According to GCGs, lung adenocarcinoma (LUAD) patients can
be divided into two subtypes with significant survival differences.

® There were significant differences in the immune microenvironment
among different risk groups, and patients in the high-risk group had

a poorer response to immunotherapy.

What is the implication, and what should change now?

* Additional prognostic markers have been identified for LUAD
patients, but further experimental validation of the results is
needed.
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this study expands our knowledge of GCGs in LUAD,
offering insights into prognostic evaluation and further
study of immunotherapy in LUAD patients. We present
this article in accordance with the TRIPOD reporting
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-24-1083/rc).

Methods
Data acquisition

A total of 59 normal and 541 LUAD samples (including
gene expression profiles and clinical data such as age,
gender, tumor grade, and tumor node metastasis (TINM)
staging) were sourced from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/). The
validation set was sourced from the GSE50081 dataset at
Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.
nih.gov/). From GeneCards (https://www.genecards.org/),
783 GCGs were obtained, filtered by a relevance score
above 2. The study was conducted in accordance with the
Declaration of Helsinki and its subsequent amendments.

Identification of LUAD subtypes associated with GCGs

characteristics

Through univariate Cox regression analysis, we identified
GCGs that correlate with LUAD patient survival in the
training set. Then, according to the expression level of
GCGs, we used the ConsensusClusterPlus R package to
determine the optimal cluster number and conducted 1,000
repetitions to ensure the classification stability. The survival
status differences between LUAD subtypes post-clustering
were analyzed to gauge the classification efficacy of GCGs.

Construction and validation of LUAD prognostic model

The edgeR R package was applied for differential analysis
to identify differentially expressed genes (DEGs) between
LUAD subtypes cluster 1 and cluster 2 [false discovery rate
(FDR) <0.05, logFC >1]. A protein-protein interaction (PPI)
network for the DEGs was created using the Search Tool
for the Retrieval of Interacting Genes/Proteins (STRING)
database, where only interactions with a confidence score
of 0.7 were included. Further, univariate Cox regression
analysis was used to screen for genes that were significantly
associated with LUAD survival. Least absolute shrinkage
and selection operator (LASSO) penalization from the
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glmmet R package was employed to streamline the list of
survival-related genes, with parameter A optimized by
10-fold cross-validation. The survminer R package then
performed multivariate Cox regression analysis on the
Lasso-selected genes to construct the definitive LUAD
prognostic model. Patients were divided into high- and
low-risk groups based on the median risk score. The
distribution of risk scores, survival status, and the expression
differences of characteristic genes across the risk groups
were illustrated. The Kaplan-Meier survival curve assessed
the disparity in survival rates between the groups. The
GSES50081 samples served as a validation cohort to further
substantiate its prognostic validity. The R package #imeROC
was used to generate receiver operating characteristic (ROC)
curves and calculate the area under the curve (AUC) values
to further evaluate the predictive efficacy of the prognostic
model.

Construction and validation of a prognostic nomogram

To confirm the capability of the model’s risk scores in
forecasting LUAD prognosis, we conducted univariate and
multivariate Cox regression analyses on clinical attributes
of LUAD patients, including age, gender, TNM, and stage,
as well as the risk scores. The clinical factors identified
by the prognostic model and multivariate Cox regression
analysis were then integrated, using the R package rms
to build a nomogram to predict 1-, 2-, and 3-year overall
survival. Decision curve analysis (DCA) curves were drawn
to evaluate the effectiveness of the nomogram. ROC curves
were plotted to evaluate the clinical potential of the model.
Calibration curves were used to assess the deviation between
the nomogram and the actual value (1, 2, and 3 years).

Detection and envichment analysis of DEGs

With the edgeR R package, differential expression analysis
was carried out on the high- and low-risk groups from the
training set to identify DEGs (FDR <0.05, logFC >1). Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis for these DEGs
was conducted using the clusterProfiler R package to explore
their biological functions. The enrichment results were
graphically presented using the enrichplot R package.

Immune microenvironment analysis

The single sample gene set enrichment analysis (ssGSEA)

© AME Publishing Company.
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method guided us to conduct a differential analysis of
immune cell infiltration and immune-related functions
between risk groups employing the gene set variation
analysis (GSVA) R package. The expression levels of
human leukocyte antigen (HLA) related genes and
immune checkpoint molecules were statistically compared
between the groups. The Tumor Immune Dysfunction
and Exclusion (TIDE) algorithm was applied to assess the
sensitivity of LUAD patients with different risk levels to
immunotherapy. The results were visualized by violin plots
following Wilcoxon testing.

Tumor mutation analysis

The maftools R package was used to analyze and compare
the mutation, status, types, single nucleotide variant (SNV)
classes, and mutation rates in the high- and low-risk groups
of LUAD patients, based on SNV mutation data from
TCGA, and to visualize the top 20 mutated genes in a gene
waterfall plot.

Drug prediction

The CellMiner database (https://discover.nci.nih.gov/
cellminer/home.do) was employed to forecast potential
drugs that may act on the genes of the prognostic model,
applying the half maximal inhibitory concentration (ICs) as
the gauge for drug sensitivity.

Statistical analysis

All statistical analyses were performed using R (version 4.0.2;
http://www.r-project.org/about.html). Pearson correlation
coefficient was used to study the correlation between
risk score and immune infiltration level, immunotherapy
response, and TIDE score. Univariate Cox regression
analysis, multivariate Cox regression analysis, and LASSO
regression analysis were used to screen model genes.
Kaplan-Meier analysis was used to assess the association
between risk scores and survival. ROC curves were used to
verify the predictive efficiency of the model. P<0.05 was
considered to indicate a statistically significant difference.

Results
Identification and survival analysis of LUAD subtypes

From 783 GCGs, 118 genes were identified as significantly
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Figure 1 Identification of LUAD subtypes and evaluation of the typing ability of GCGs. (A) LUAD clustering results based on GCG

expression; (B) survival analysis of the two subtypes after clustering. GCGs, glucocorticoids-related genes; LUAD, lung adenocarcinoma.

associated with LUAD prognosis via univariate Cox
regression analysis (table available at https://cdn.amegroups.
cn/static/public/jtd-24-1083-1.xlsx). Subsequently,
unsupervised clustering based on GCG expression among
LUAD samples led to two subtypes, cluster 1 (n=326) and
cluster 2 (n=172) (Figure 14). The survival analysis showed
a significant divergence in survival status between these
two subtypes (P=4.729x107°) (Figure 1B), with a higher
survival rate observed in cluster 1. This demonstrated the
validity of GCG-based LUAD subtype classification for

subsequent research.

Assessment of prognostic model predictive capacity

Differential expression analysis of the cluster 1 and cluster 2
subtypes led to the discovery of 403 DEGs (table available
at https://cdn.amegroups.cn/static/public/jtd-24-1083-
2.xIsx). A PPI network was then constructed (number of
nodes: 401, number of edges: 223, average node degree:
1.11, avg. local clustering coefficient: 0.279, expected
number of edges: 41, PPI enrichment P value: <1.0e-16),
where 159 DEGs were found to interact (Figure 2, table
available at https://cdn.amegroups.cn/static/public/jtd-24-
1083-3.xIsx). These genes were to be considered for the
prognostic model. Following univariate Cox regression
analysis and tuning of the Lasso coefficient with parameter
A, 17 genes associated with LUAD survival were identified
(Figure 3A4,3B). A prognostic model with 9 genes was then

© AME Publishing Company.

established through multivariate Cox regression (Figure 3C).
The model formula is as follows:

Riskscore =—0.149281745* CLCA1-0.137673074* CYP17 Al
—0.087378951* GRIA2 +0.05675468 * IGF 2BP1
+0.081689231* IGFBPI+0.048219114* NTSRI [1]
+0.125469274* RPE65 +0.095176458 *VGF
—0.101370953*WNT16

Our research posited a strong correlation between the

nine characteristic genes and the prognosis of LUAD.
By evaluating the expression levels of these genes, we
ascertained the prognostic risks for LUAD patients within
the training cohort, subsequently stratifying them into
high- and low-risk groups (Figure 44). An assessment of
the survival status within these risk groups indicated a
higher mortality rate for the high-risk group (Figure 4B).
Furthermore, the expression patterns of the prognostic
genes exhibit marked variations between the two groups
(Figure 4C). Employing Kaplan-Meier survival analysis,
we concluded that the survival rate for the high-risk
group was notably lower than that of the low-risk group
(P=5.946x107"") (Figure 4D). To determine the validity of
the prognostic model, we generated ROC curves for 1, 3,
and 5 years, obtaining AUC values of 0.74, 0.74, and 0.72,
respectively, all above 0.7 (Figure 4E). This suggests that
the model has a robust predictive capacity for LUAD
prognosis. Moreover, we further tested its accuracy
using the GSE50081 validation set. The validation set
mirrored the training set in terms of survival status and
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Figure 2 PPI network of 159 DEGs in clusters 1 and 2. DEGs, differentially expressed genes; PPI, protein-protein interaction.

the characteristic gene expression of the high- and low-
risk groups (Figure 4F-4H). The Kaplan-Meier survival
curve demonstrated that the survival rate in the high-
risk group is still significantly lower (P=1.64x10"")
(Figure 4I). The ROC curves displayed AUC values of
0.71, 0.71, and 0.76 for 1, 3, and 5 years, respectively,
indicating the excellent forecasting ability of the
prognostic model (Figure 47). In conclusion, the model,

© AME Publishing Company.

performing superior forecasting for LUAD prognosis,
can be utilized in further research.

Independent prognosis value of the risk score in the
prognostic model

To verify whether the risk score could independently
foretell the prognosis of LUAD patients, we employed
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Journal of Thoracic Disease, Vol 17, No 4 April 2025

A 38 38 38 37 35 35 33 28 23 20 17 15 9 7 4
12.5 4
12.4
©
[$)
g
S 12,3 4 Tteeel, o1
] (298
© 1 . .
el ... .
o I .
§ 12.2 4 thl o)
) el 5
= % e
5 12.1
t
IS
o
12.0 §
11.9 T T T T T T
-7 -6 -5 -4 -3 -2
Log (\)
C .
Genes Number Hazard ratio (95% CI)
CLCA1 498 0.86 (0.78-0.95)
CYP17A 498 0.87 (0.79-0.96)
GRIA2 498 0.92 (0.83-1.01)
IGF2BP1 498 1.06 (1.01-1.10)
IGFBP1 498 1.09 (1.03-1.15)
NTSR1 498 1.05 (0.99-1.11)
RPE65 498 1.13 (1.04-1.24)
VGF 498 1.10 (1.03-1.18)
WNT16 498 0.90 (0.83-0.99)
#Events: 182; Global P value (Log-Rank): 1.0168e-13
AIC: 1881.39; Concordance Index: 0.69 0.75

1893

B 38 37 32 22 13 0
0.10=
0055 \
~_ \u
2 0.004% ~
Q2 -
(&)
2
3
8 —0.05-
-0.10+ ¥
-0.15 »
T T T T T T
-7 -6 -5 -4 -3 -2
Log (\)
. P value
| T 0.004*
—a— 0.004**
——— 0.069
—— 0.008**
Co— 0.004*
— 0.092
——— 0.006"
—— 0.007**
— 0.022*
08 08 09 095 1 1.05 1.1 1.15 1.2 1.25

Hazard ratio
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univariate and multivariate Cox regression analyses to
assess the clinical features and risk scores of LUAD samples
(Figure 5A,5B). The findings indicated that the risk score
is an independent predictor of LUAD patient prognosis
(P<0.001). Then we developed a nomogram from the
prognostic model to project the 1-, 2-, and 3-year clinical

© AME Publishing Company.

outcomes for LUAD patients (Figure 5C). Calibration curve
analysis showed a strong correlation between the predicted
and actual survival rates (Figure 5D). suggesting that our
nomogram precisely predicted LUAD patient survival
rates. The ROC curves revealed the highest AUC value for
the risk score, at 0.764 (Figure SE), indicating its superior
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Figure 5 The independent prediction of the prognostic model. (A) Forest plot from univariate Cox regression analysis with combined
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(E) ROC curves for the assessment of clinical features and the risk score. (F) DCA curves for the nomograms at 1, 2, and 3 years. AUC, area

under the curve; CI, confidence interval; DCA, decision curve analysis; ROC, receiver operating characteristic.

prognostic performance in comparison to other clinical
characteristics. The DCA curves suggested that the model

may perform well in clinical practice (Figure 5F). These

findings support the idea that the 9 genes in the prognostic
model can act as independent prognostic factors for LUAD

patients.

© AME Publishing Company.

Examination of the underlying biological functions in
LUAD patients with different risk levels

A differential expression analysis was executed between the

risk groups, culminating in the identification of 1,129 DEGs

(table available at https://cdn.amegroups.cn/static/public/
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Figure 6 Examination of the underlying biological functions in LUAD patients in different risk groups. (A) GO enrichment plot for DEGs

between the high- and low-risk groups. (B) KEGG enrichment plot for DEGs between the high- and low-risk groups. BP, biological

process; cAMP, cyclic adenosine monophosphate; CC, cellular component; DEGs, differentially expressed genes; GO, Gene Ontology;

LUAD, lung adenocarcinoma; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.

jtd-24-1083-4.xIsx). An enrichment analysis of DEGs was
performed to elucidate the variances in signaling pathways
between two risk cohorts. GO enrichment analysis showed
that these DEGs were mainly concentrated in GO entries
such as cilium-dependent cell motility, ion channel complex,
structural constituent of chromatin, and neurotransmitter
receptor activity (Figure 6A). Similarly, KEGG enrichment
analysis showed that DEGs are mainly associated with
pathways like neuroactive ligand-receptor interaction,
systemic lupus erythematosus, neutrophil extracellular trap
formation, and cyclic adenosine monophosphate (cAMP)
signaling pathway (Figure 6B). These findings imply that the
DEGs within the high- and low-risk groups predominantly
participate in biological processes related to cell signaling
and metabolism.

Immune profiling in LUAD patients with varying risk
values

Using ssGSEA, we found a marked divergence in the
immunological profiles between the high- and low-
risk patient cohorts. Specifically, the high-risk cohort

© AME Publishing Company.

demonstrated an elevated presence of Tth (P=0.002)
and Thl cells (P=0.04), contrasting with a diminished
presence of aDCs (P=2.56x107), iDCs (P=0.001), mast
cells (P=1.55x107"), and neutrophils (P=3.27x107%)
(Figure 7A). Concurrently, there was a discernible variation
in the enrichment of immunological pathways, with
the high-risk group exhibiting increased expression in
functions such as APC_co_stimulation (P=0.02), MHC_
class_I (P=8.18x107’), parainflammation (P=0.003),
and Inflammation.promoting (P=0.002), and decreased
expression in HLA (P=0.003) and Type_II_IFN_Response
(P=6.79x10"") (Figure 7B). The statistical profiles of HLA-
related gene expression further backed up the findings.
Specifically, the genes HLA-A (P=0.03) and HLA-G
(P=0.002) demonstrated elevated expression within the
high-risk cohort, while the genes HLA-DMA (P=0.003),
HLA-DMB (P=0.003), HLA-DOA (P=0.003), HLA-DOB
(P=0.02), HLA-DPA1 (P=0.02), HLA-DPBI (P=0.02), HLA-
DQB2 (P=0.001), HLA-DRA (P=0.02), and HLA-DRBS
(P=0.002) were highly expressed in the low-risk cohort
(Figure 7C). Subsequent analysis of immune checkpoints
showed a pronounced upregulation of LAG3 (P=0.003),
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Figure 7 Immune profiling in LUAD patients with varying risk values. (A) Infiltration levels of immune cells in both risk groups.

(B) Expression levels of immune cell functions in both risk groups. (C) Expression of HLA-related genes in both risk groups. (D) Expression

of immune checkpoints in the high- and low-risk groups. (E) TIDE scores between the high- and low-risk groups. ***, P<0.001. aDCs,

activated dendritic cells; APC, antigen-presenting cell; CCR, C-C chemokine receptor; iDCs, immature dendritic cells; MHC, major
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PDCD1 (P=0.002), TMIGD2 (P=0.04), and CEACAM]19
(P=4.90x107) in the high-risk cohort, and conversely, BTL.A
(P=0.03) and CD40LG (P=2.72x10") exhibited increased
expression within the low-risk cohort (Figure 7D). Potential
divergence in immunotherapy responsiveness was revealed.
The TIDE algorithm also helped us uncover a higher
immune evasion rate in the high-risk group (P<0.001)
(Figure 7E). Overall, these results suggested the need for
tailored immunotherapy for LUAD patients with varying
risk levels.

Mutation profiling

We investigated genetic mutation variances between
high- and low-risk groups via maftools R, identifying

© AME Publishing Company.

Missense_Mutations as the most frequent in both groups,
with a cytosine(C)-to-adenine(A) transition trend in SNV
nucleotide sites (Figure 84,8B). The top 20 mutated genes
were congruent between risk groups (Figure 8C,8D).
Notably, TTN exhibited the highest mutation frequency in
the high-risk group at 57%, while 7P53 showed a mutation
rate of 45%, which was the highest in the low-risk group.
These mutation rate variances might be responsible for the
varying risk profiles in LUAD patients.

Potential drug prediction

We used CellMiner database to pinpoint drugs for
prognostic gene markers. The gene VGF showed the highest
drug sensitivity. Thus, we spotlighted the top nine drugs
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that exhibited a significant positive correlation with the VGF
gene (P<0.001), namely Dabrafenib (Cor =0.641), ARQ-
680 (Cor =0.621), PL.X-4720 (Cor =0.614), Vemurafenib
(Cor =0.604), BGB-283 (Cor =0.576), PLX-8394
(Cor =0.573), MLN-2480 (Cor =0.572), TAK-632
(Cor =0.569), and GDC-0994 (Cor =0.549) (Figure 9A).
Further, we compared the drug sensitivity in the high and
low expression groups of VGFE, with the measure ICs,.
BGB-283 demonstrated the most pronounced difference

1899

in ICs, values between the high and low VGF expression
groups (P<0.05) (Figure 9B). Overall, BGB-283 emerges as
a candidate drug for VGF-targeted LUAD therapy.

Discussion

The potent heterogeneity of LUAD leads to its intricate
pathogenic mechanisms. Classification of LUAD based
on histological features has facilitated the development
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of targeted treatment strategies, yet the prognostic
prediction of LUAD is still elusive (10-12), necessitating
further refinement. The synergy between GCs and their
receptors is a key regulatory mechanism for the body’s
ecological balance, with the lung’s normal maturation being
intrinsically tied to the GCs-GR axis (13,14). Previous
research also highlighted the role of the GCs-GR axis in the
progression of lung cancer and its resistance to treatment.
Sasaki et 4l. have uncovered the involvement of GCs and
GR pathway in LUAD recurrence and prognosis, and also
identified the downstream regulatory genes, NDRG-1, and
the protein kinase SGK-1, as key prognostic factors for
LUAD (15). These insights point to a strong correlation
between the GCs-GR pathway and LUAD, potentially
aiding in LUAD prognostic research.

This research, based on the expression of GCGs,
grouped LUAD patients into two prognostic subtypes—
cluster 1 (higher survival rates) and cluster 2 (lower survival
rates), thereby highlighting the prognostic significance of
the GR in LUAD. Following a differential analysis of these
subtypes, we developed a prognostic model, revealing an
association between LUAD prognosis and 9 specific genes:
CLCAI, CYP17A1, GRIA2, IGFBPI, IGF2BP1, NTSRI,
RPEG65, VGF, and WNT16. Notably, CLCA1, identified as
a secreted autolytic protein, modulates calcium-dependent
chloride channels, thereby implicating itself in cellular
processes such as proliferation, migration, and metastasis
(16). Studies have substantiated the modulatory role of
TMEMI6A, a calcium-gated chloride channel protein,
in tumorigenesis and invasiveness of lung cancer cells,
with CLCAI identified as a direct modulatory agent of
TMEM16A (17,18). The study of CLCAI in lung cancer
remains unexplored, offering a promising avenue for future
research into LUAD pathogenesis and development.
CYP17A1, a versatile hydroxylase within the cytochrome
P450 enzyme family, primarily governs the biosynthesis of
sex hormones, thereby influencing neoplastic conditions
such as prostate and breast cancer (19,20). Zhang ez al. (21)
identified CYP17A1 as a potential candidate gene for non-
small cell lung cancer (NSCLC) susceptibility. However,
its polymorphism showed no association with NSCLC
development in Asian populations. Recent findings suggest
that low CYPI7AI expression in high-risk LUAD cohorts
acts as a protective factor (22), aligning with the outcomes
of this investigation. GRIA2, encoding a subunit of the
AMPA-type ionotropic glutamate receptors, is recognized
as a neurotransmitter receptor reliant on lung and breast

© AME Publishing Company.
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cancer cells (23). IGFBPI, a potent regulator of insulin-
like growth factor (IGF) activity, influences cancer
progression by modulating essential cellular processes such
as proliferation, migration, invasion, and apoptosis (24).
Elevated IGFBPI levels have been linked to poorer
LUAD prognosis (25). In vivo and in vitro experimental
data demonstrate that IGFBPI suppression inhibits LUAD
cell proliferation, migration, and epithelial-mesenchymal
transition (EMT) capabilities, suppressing tumor growth (26).
Cai et al. (27) demonstrated that IGFBPI maintains cancer
cell survival and drives tumor metastasis by regulating
the phosphorylation and activity of SOD2 in lung cancer.
NTSRI, a G protein-coupled receptor, participates in
neurotransmission and metabolic processes through its
interaction with neurotensin peptides (28). As upregulated
in LUAD, NTSRI stimulates EMT and cell metastasis
through the Wnt/B-catenin pathway (29). Recently, Chen
et al. (30) elucidated that NTSRI facilitates the migration and
invasiveness of pulmonary oncocytes via the reconfiguration
of the cytoskeletal architecture. RPE6S, an enzyme with
retinol isomerase activity, catalyzes the conversion of all-
trans-retinyl esters to 11-cis-retinol (31). Limited studies
have addressed the role of RPE6S in lung cancer. In a
comprehensive pan-cancer analysis, Keshavarz-Rahaghi
et al. (32) identified RPE65 as a genetic trait linked to the loss
of p53 function. More recently, Zhou ez 4. (33) highlighted
RPEG5 as a potential prognostic indicator for LUAD
by examining crucial smoking-related genes in LUAD,
correlating it with poorer outcomes. Hence, in conjunction
with our findings, RPEG5 emerges as a novel marker
for LUAD, yet further experimental validation remains
imperative. VGE, as a neurotrophic factor, is involved in
the regulation of EGFR-TKI resistance in LUAD (34,35).
Li er al. (36) uncovered through bioinformatics that VGF
serves as a standalone prognostic indicator in forecasting
the overall survival of NSCLC patients. Additionally,
Shi et al. (37) demonstrated that METTL3 enhances the
malignancy of LUAD cells by controlling VGF through
transcriptional regulation (histone modification) and post-
transcriptional modification (m6A). WNT16 is a member
of the WNT ligand family, and the abnormal expression
of WNT ligands plays a crucial role in the etiology and
progression of various malignancies, inclusive of NSCLC
and colorectal cancer (38,39). In summary, the nine
identified GCGs in this study likely contribute to LUAD
onset and progression, potentially serving as biomarkers.
However, further experimental investigations are crucial to
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elucidate the specific roles of these genes in LUAD.

A novel modality in oncology by stimulating the human
immune system, immunotherapy marks a breakthrough
in the therapeutics of LUAD (40). In this context,
we investigated the potential therapeutic benefits of
immunotherapy among LUAD patients stratified by
risk. Analysis of immune cell infiltration profiles revealed
elevated expression of Thl cells within the high-risk cohort,
in contrast to augmented expression of aDCs and iDCs
within the low-risk cohort. It is well-documented that
T cells are the primary targets in the immunotherapy of
lung cancer (41). Thl cells, a subset of T cells, are known
to secrete tumor necrosis factor (TNF)-a, interleukin
(IL)-2, and interferon-gamma (IFN-y), cytokines that are
instrumental in mounting an effective anti-tumor immune
response (42). Contrary to this, Ito et al. (43) observed
in tumor-infiltrating lymphocytes (TIL) of lung cancer
patients that Thl cells were less effective in producing
IFN-y, suggesting a potential suppression of Thl cell
function in the context of lung malignancies. Dendritic
cells (DCs), endowed with exceptional antigen-presenting
efficacy, are capable of eliciting antigen-specific T cell
reactions and thus rendered as pivotal vaccine targets in
lung cancer immunotherapy (44), which comes as a pleasant
relief for low-risk LUAD population. Advanced research
has uncovered remarkable variations in the immune
functional profiles across LUAD patients with diverse risk
stratifications. Pulmonary inflammation, instigated by
an array of stressors including smoking and particulates,
is a contributing factor in the genesis of lung cancer,
and Kraemer er 4/. have discerned a marked decrement
in the cytotoxic T cell infiltration within lung cancer
specimens with heightened inflammation scores (45,46).
Meanwhile, inflammatory episodes are known to induce
the upregulation of major histocompatibility complex
(MHC) class I within pulmonary epithelial cells, thereby
augmenting the immunosurveillance against malignant
lung cells (47), elucidating why there existed heightened
expression of immune functions such as Inflammation.
promoting, MHC class I, and parainflammation in high-risk
LUAD patients with lower survival rates. Immune evasion
is a defining characteristic of cancer. It has been established
that the attenuation of HLA allele expression may
precipitate a reduction in antigen presentation, encouraging
the immune evasion and metastatic dissemination of
lung cancer (48,49). Thus, the pronounced expression of
numerous HLA genes in the low-risk group might curtail
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the immune evasive mechanisms of pulmonary oncogenic
genes. The TIDE algorithmic assessment corroborated
this proposition. Intriguingly, the high-risk group persists
in the heightened expression of HLA-A and HLA-G genes,
potentially accounting for the marked variance in immune
checkpoint expression between the groups. In essence,
this prognostic model may inform the immunotherapeutic
strategies for LUAD.

We further explored the genetic mutation profiles across
the risk cohorts, uncovering notable similarities between
them. Utilizing the CellMiner database to predict drugs
targeting the signature gene V'GF, we ventured that BGB-
283 is a promising candidate for LUAD therapeutics. Yet,
the mechanism of action of the drug and its treatment
effects require further investigation.

Conclusions

Collectively, our research harnessed bioinformatics to
discern two LUAD subtypes characterized by distinct
GCGs, clusters 1 and 2, and subsequently developed
a robust LUAD prognostic model predicated on the
divergences among these subtypes. This model holds
immense value in guiding LUAD immunotherapy.
Targeting specific genes and pathways can enhance
treatment outcomes for LUAD patients. By utilizing
predictive models, we can evaluate risk scores for early
screening and monitoring of high-risk groups. Notably,
our findings suggest that patients in the low-risk category
are more responsive to immune therapy. Therefore, the
implementation of a risk assessment model by our research
institute can aid in tailoring personalized treatment
decisions for LUAD, improving clinical management.
Furthermore, customizing immunotherapy and medication
selection can boost medical service efficiency and quality,
minimizing resource waste and lowering treatment
costs. Yet, there are limitations to this study that warrant
attention: (I) the study is limited by a restricted sample pool
and did not include biological experiments to confirm the
accuracy of LUAD subtype predictions and classifications.
(II) The exact molecular mechanisms by which GCGs
regulate LUAD are not delineated, which will be the
primary focus in our next phase of research.

Acknowledgments

None.

7 Thorac Dis 2025;17(4):1888-1905 | https://dx.doi.org/10.21037/jtd-24-1083



Journal of Thoracic Disease, Vol 17, No 4 April 2025

Footnote

Reporting Checklist: The authors have completed the
TRIPOD reporting checklist. Available at https://jtd.
amegroups.com/article/view/10.21037/jtd-24-1083/rc

Peer Review File: Available at https://jtd.amegroups.com/
article/view/10.21037/jtd-24-1083/prf

Funding: None.

Conflicts of Interest: All authors have completed the ICMJE
uniform disclosure form (available at https://jtd.amegroups.
com/article/view/10.21037/jtd-24-1083/coif). The authors
have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all
aspects of the work in ensuring that questions related
to the accuracy or integrity of any part of the work are
appropriately investigated and resolved. The study was
conducted in accordance with the Declaration of Helsinki
and its subsequent amendments.

Open Access Statement: This is an Open Access article
distributed in accordance with the Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 International
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with
the strict proviso that no changes or edits are made and the
original work is properly cited (including links to both the
formal publication through the relevant DOI and the license).
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Kratzer TB, Bandi P, Freedman ND, et al. Lung cancer
statistics, 2023. Cancer 2024;130:1330-48.

2. Reck M, Remon J, Hellmann MD. First-Line
Immunotherapy for Non-Small-Cell Lung Cancer. J Clin
Oncol 2022;40:586-97.

3. Seguin L, Durandy M, Feral CC. Lung Adenocarcinoma
Tumor Origin: A Guide for Personalized Medicine.
Cancers (Basel) 2022;14:1759.

4. de Sousa VML, Carvalho L. Heterogeneity in Lung
Cancer. Pathobiology 2018;85:96-107.

5. Willner J, Narula N, Moreira AL. Updates on lung
adenocarcinoma: invasive size, grading and STAS.
Histopathology 2024;84:6-17.

© AME Publishing Company.

10.

11.

12.

13.

15.

16.

17.

18.

1903

Denaro N, Garrone O, Morelli A, et al. A narrative review
of the principal glucocorticoids employed in cancer. Semin
Oncol 2022;49:429-38.

Xu M, Wang X. Critical roles of mucin-1 in sensitivity

of lung cancer cells to tumor necrosis factor-alpha and
dexamethasone. Cell Biol Toxicol 2017;33:361-71.

Choi HS, Kim SL, Kim JH, et al. The FDA-Approved
Anti-Asthma Medicine Ciclesonide Inhibits Lung Cancer
Stem Cells through Hedgehog Signaling-Mediated SOX2
Regulation. Int ] Mol Sci 2020;21:1014.

Prekovic S, Schuurman K, Mayayo-Peralta I, et al.
Glucocorticoid receptor triggers a reversible drug-tolerant
dormancy state with acquired therapeutic vulnerabilities in
lung cancer. Nat Commun 2021;12:4360.

Mikinen JM, Laitakari K, Johnson S, et al. Histological
features of malignancy correlate with growth patterns and
patient outcome in lung adenocarcinoma. Histopathology
2017;71:425-36.

Travis WD, Brambilla E, Geisinger KR. Histological
grading in lung cancer: one system for all or separate
systems for each histological type? Eur Respir J
2016;47:720-3.

LiR, Li Z, Yang Z, et al. The presence of micropapillary
and/or solid subtypes is an independent prognostic factor
for patients undergoing curative resection for stage I lung
adenocarcinoma with ground-glass opacity. Transl Lung
Cancer Res 2024;13:256-68.

Cohen DM, Steger DJ. Nuclear Receptor Function
through Genomics: Lessons from the Glucocorticoid
Receptor. Trends Endocrinol Metab 2017;28:531-40.

. Bird AD, McDougall AR, Seow B, et al. Glucocorticoid

regulation of lung development: lessons learned from
conditional GR knockout mice. Mol Endocrinol
2015;29:158-71.

Sasaki T, Nakamura Y, Hata S, et al. The GR-SGK1-
NDRGI Pathway as a Predictor of Recurrence and
Prognosis in Lung Adenocarcinoma After Radical Surgery.
Anticancer Res 2023;43:2965-74.

Liu CL, Shi GP. Calcium-activated chloride channel
regulator 1 (CLCA1): More than a regulator of chloride
transport and mucus production. World Allergy Organ ]
2019;12:100077.

Jia L, Liu W, Guan L, et al. Inhibition of Calcium-
Activated Chloride Channel ANO1/TMEMI16A
Suppresses Tumor Growth and Invasion in Human Lung
Cancer. PLoS One 2015;10:e0136584.

Sala-Rabanal M, Yurtsever Z, Nichols CG, et al. Secreted
CLCA1 modulates TMEMI6A to activate Ca(2+)-

7 Thorac Dis 2025;17(4):1888-1905 | https://dx.doi.org/10.21037/jtd-24-1083


https://jtd.amegroups.com/article/view/10.21037/jtd-24-1083/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-24-1083/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-24-1083/prf
https://jtd.amegroups.com/article/view/10.21037/jtd-24-1083/prf
https://jtd.amegroups.com/article/view/10.21037/jtd-24-1083/coif
https://jtd.amegroups.com/article/view/10.21037/jtd-24-1083/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/

1904

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

dependent chloride currents in human cells. Elife
2015;4:e05875.

Gomez L, Kovac JR, Lamb DJ. CYP17A1 inhibitors in
castration-resistant prostate cancer. Steroids 2015;95:80-7.
Wrébel TM, Jorgensen FS, Pandey AV, et al. Non-
steroidal CYP17A1 Inhibitors: Discovery and Assessment.
J Med Chem 2023;66:6542-66.

Zhang Y, Hua S, Zhang A, et al. Association between
polymorphisms in COMT, PLCH1, and CYP17A1, and
non-small-cell lung cancer risk in Chinese nonsmokers.
Clin Lung Cancer 2013;14:45-9.

Wu Y, Fu L, Wang B, et al. Construction of a prognostic
risk assessment model for lung adenocarcinoma based

on Integrin p family-related genes. J Clin Lab Anal
2022;36:¢24419.

Deshpande K, Martirosian V, Nakamura BN] et al.
Neuronal exposure induces neurotransmitter signaling
and synaptic mediators in tumors early in brain metastasis.
Neuro Oncol 2022;24:914-24.

Lin YW, Weng XF, Huang BL, et al. IGFBP-1 in cancer:
expression, molecular mechanisms, and potential clinical
implications. Am J Transl Res 2021;13:813-32.

Yao Z, Han J, Wu ], et al. Deciphering the
multidimensional impact of IGFBP1 expression on cancer
prognosis, genetic alterations, and cellular functionality:
A comprehensive Pan-cancer analysis. Heliyon
2024;10:e37402.

LiY, Yang X, Han T, et al. IGFBP1 promotes the
proliferation and migration of lung adenocarcinoma

cells through the PPARa pathway. Transl Oncol
2024;49:102095.

Cai G, QiY, Wei P, et al. IGFBP1 Sustains Cell Survival
during Spatially-Confined Migration and Promotes Tumor
Metastasis. Adv Sci (Weinh) 2023;10:¢2206540.

Iyer MR, Kunos G. Therapeutic approaches targeting
the neurotensin receptors. Expert Opin Ther Pat
2021;31:361-86.

Zhang Z, Zhang D, Su K, et al. NTSR1 promotes
epithelial-mesenchymal transition and metastasis in lung
adenocarcinoma through the Wnt/B-catenin pathway.
Mutat Res 2024;829:111877.

Chen YL, Liu YN, Lin YT, et al. LncRNA SLCO4A1-AS1
suppresses lung cancer progression by sequestering the
TOX4-NTSRI signaling axis. ] Biomed Sci 2023;30:80.
Kiser PD. Retinal pigment epithelium 65 kDa protein
(RPEG65): An update. Prog Retin Eye Res 2022;88:101013.
Keshavarz-Rahaghi F, Pleasance E, Kolisnik T; et al. A
p53 transcriptional signature in primary and metastatic

© AME Publishing Company.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Tang et al. LUAD subtype and prognostic model based on GCGs

cancers derived using machine learning. Front Genet
2022;13:987238.

Zhou D, Sun'Y, Jia Y, et al. Bioinformatics and functional
analyses of key genes in smoking-associated lung
adenocarcinoma. Oncol Lett 2019;18:3613-22.

Yang LH, Lee RK, Kuo MH, et al. Neuronal survival
factor VGF promotes chemoresistance and predicts poor
prognosis in lung cancers with neuroendocrine feature. Int
J Cancer 2022;151:1611-25.

Hwang W, Chiu YF, Kuo MH, et al. Expression of
Neuroendocrine Factor VGF in Lung Cancer Cells
Confers Resistance to EGFR Kinase Inhibitors and
Triggers Epithelial-to-Mesenchymal Transition. Cancer
Res 2017;77:3013-26.

Li R, Liu X, Zhou X]J, et al. Identification and validation
of the prognostic value of immune-related genes in non-
small cell lung cancer. Am ] Transl Res 2020;12:5844-65.
Shi K, Sa R, Dou L, et al. METTL3 exerts synergistic
effects on m6A methylation and histone modification to
regulate the function of VGF in lung adenocarcinoma.
Clin Epigenetics 2023;15:153.

Xue W, Cai L, Li S, et al. WNT ligands in non-small cell
lung cancer: from pathogenesis to clinical practice. Discov
Oncol 2023;14:136.

Bugter JM, Fenderico N, Maurice MM. Publisher
Correction: Mutations and mechanisms of WN'T pathway
tumour suppressors in cancer. Nat Rev Cancer 2021;21:64.
Lahiri A, Maji A, Potdar PD, et al. Lung cancer
immunotherapy: progress, pitfalls, and promises. Mol
Cancer 2023;22:40.

Wu Y, Yuan M, Wang C, etal. T lymphocyte cell: A pivotal
player in lung cancer. Front Immunol 2023;14:1102778.
Mateu-Jimenez M, Curull V, Pijuan L, et al. Systemic

and Tumor Th1 and Th2 Inflammatory Profile and
Macrophages in Lung Cancer: Influence of Underlying
Chronic Respiratory Disease. ] Thorac Oncol
2017;12:235-48.

Ito N, Nakamura H, Metsugi H, et al. Dissociation
between T helper type 1 and type 2 differentiation and
cytokine production in tumor-infiltrating lymphocytes in
patients with lung cancer. Surg Today 2001;31:390-4.

Lee JM, Lee MH, Garon E, et al. Phase I Trial of
Intratumoral Injection of CCL21 Gene-Modified
Dendritic Cells in Lung Cancer Elicits Tumor-Specific
Immune Responses and CD8(+) T-cell Infiltration. Clin
Cancer Res 2017;23:4556-68.

. Kraemer Al, Chong C, Huber F, et al. The

immunopeptidome landscape associated with T cell

7 Thorac Dis 2025;17(4):1888-1905 | https://dx.doi.org/10.21037/jtd-24-1083



Journal of Thoracic Disease, Vol 17, No 4 April 2025 1905

infiltration, inflammation and immune editing in lung during Inflammation. ] Immunol 2022;208:1021-33.

cancer. Nat Cancer 2023;4:608-28. 48. Ivanova M, Shivarov V. HLA genotyping meets response
46. Miron O, Afrasanie VA, Paduraru MI, et al. The to immune checkpoint inhibitors prediction: A story just

relationship between chronic lung diseases and lung cancer started. Int ] Immunogenet 2021;48:193-200.

- a narrative review. ] BUON 2020;25:1687-92. 49. McGranahan N, Rosenthal R, Hiley CT, et al. Allele-
47. Mathé J, Benhammadi M, Kobayashi KS, et al. Regulation Specific HLA Loss and Immune Escape in Lung Cancer

of MHC Class I Expression in Lung Epithelial Cells Evolution. Cell 2017;171:1259-1271.e11.

Cite this article as: Tang H, Zhu J, Wang Y, Zhang ],
Zhou J, Chen Z. Defining lung adenocarcinoma subtypes
with glucocorticoid-related genes and constructing a
prognostic index for immunotherapy guidance. ] Thorac Dis
2025;17(4):1888-1905. doi: 10.21037/jtd-24-1083

© AME Publishing Company. 7 Thorac Dis 2025;17(4):1888-1905 | https://dx.doi.org/10.21037/jtd-24-1083



